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People view uncertain events as knowable in principle (epistemic uncertainty), as fundamentally random (aleatory
uncertainty), or as some mixture of the two. We show that people make more extreme probability judgments
(i.e., closer to 0 or 1) for events they view as entailing more epistemic uncertainty and less aleatory uncertainty. We
demonstrate this pattern in a domain where there is agreement concerning the balance of evidence (pairings of
teams according to their seed in a basketball tournament) but individual differences in the perception of the
epistemicness/aleatoriness of that domain (Study 1), across a range of domains that vary in their perceived
epistemicness/aleatoriness (Study 2), in a single judgment task for which we only vary the degree of randomness
with which events are selected (Study 3), and when we prime participants to see events as more epistemic or
aleatory (Study 4). Decomposition of accuracy scores suggests that the greater judgment extremity of more
epistemic events can manifest itself as a trade-off between enhanced resolution and diminished calibration. We
further relate our findings to the hard—easy effect and also show that differences between epistemic and aleatory

judgment are amplified when judges have more knowledge concerning relevant events.
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Introduction
Judgment under uncertainty entails two challenges—
what to believe and how strongly to hold those beliefs.
Determining an appropriate strength of belief is critical
for a wide range of decisions by both laypeople and
experts. For instance, jurors in U.S. criminal cases not
only must determine whether a defendant is more
likely guilty than innocent but also must determine
whether the defendant is guilty beyond a “reasonable
doubt.” Physicians are frequently called on to advise
their patients not only on what course of treatment
to pursue but also of how likely that treatment is to
succeed. Consumers confronting a decision to purchase
insurance must not only consider whether a future
insurance claim is possible but also consider how likely
they are to make a claim. Because expectation generally
forms the basis of action, formulating appropriate
degrees of belief is a necessary component of a rational
decision process.

In this paper we focus on judgment extremity, the
degree to which probabilistic beliefs approach 0 or 1.

A well-established literature finds that people are prone
to excessive confidence in a wide range of contexts,
and that such overconfidence can be both costly and
difficult to eliminate (Klayman et al. 1999, Lichtenstein
et al. 1982, Moore and Healy 2008). Judgment extremity
is the central psychological primitive that defines,
relative to empirical frequencies, both overconfidence
(judgments that are too extreme) and underconfidence
(judgments that are not sufficiently extreme). Moreover,
the extremity of one’s beliefs determines how much
we discriminate between different events and therefore
provides a basis for understanding the information
contained in a judgment. For example, a person who
always estimates a 50% chance that an arbitrarily
chosen team will win their baseball game will be
well calibrated but not particularly discriminating.
Finally, judgment extremity is a critical driver of one’s
own willingness to act under uncertainty (e.g., Fox
and Tversky 1998), and expressions of extremity also
strongly influence decisions made by others (e.g., when
an eyewitness identifies a potential suspect; Tenney
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et al. 2007). Thus, understanding the psychological
processes that give rise to judgment extremity can shed
light on both judgment accuracy and decisions under
uncertainty.

We assert that people naturally distinguish two
dimensions of uncertainty (Fox and Ulkiimen 2011), and
this distinction critically influences judgment extremity.
First, uncertainty can arise from the inherent unpre-
dictability of random events in the world (as with the
uncertainty concerning the outcome of a coin flip);
second, uncertainty can arise from awareness of one’s
deficiencies in knowledge, information, or skills to
correctly predict or assess an event that is, in principle,
knowable (as with the uncertainty concerning the cor-
rect answer to a trivia question). This philosophical
distinction between uncertainty of inherently stochastic
events (aleatory uncertainty) and uncertainty in assess-
ments of what is or will be true (epistemic uncertainty)
can be traced to the early foundations of probability
theory (Hacking 1975), but it has thus far received
scant empirical attention as a descriptive feature of
judgment under uncertainty.

Across four studies, we find that judgments are
more extreme for events viewed as more epistemic
and less extreme for events viewed as more aleatory.
Prior research suggests that judged probabilities can be
modeled as an assessment of the balance of evidence
for and against a hypothesis that is mapped onto a
number between 0 and 1 (Tversky and Koehler 1994,
Rottenstreich and Tversky 1997, Fox 1999). We find
that the impact of epistemicness and aleatoriness on
judgment extremity can be traced to the mapping of
relative evidence onto a judged probability, rather than
by perturbing initial impressions of evidence strength.

In the section that follows, we elaborate on the dis-
tinction between epistemic and aleatory uncertainty
and motivate its connection to judgment extremity.
Next, we present a series of empirical tests of our
central hypothesis and show how these claims can be
embedded within a formal model of judged probability
(Tversky and Koehler 1994). In the final section of the
paper, we extend our investigation to an analysis of
judgment accuracy. We demonstrate that perceptions
of epistemic and aleatory uncertainty have opposing
effects on distinct components of judgment accuracy—
namely, calibration and resolution. We also discuss
implications of our findings for improving accuracy in
task environments that lead to systematic overconfi-
dence versus underconfidence.

Epistemic vs. Aleatory Judgment Under Uncertainty
Most theories of judgment and decision making con-
strue uncertainty as a unitary construct. For instance, in
Bayesian decision theories, subjective probabilities are
treated as degrees of belief (e.g., Savage 1954), regard-
less of their source. Meanwhile, frequentist accounts

of probability restrict their attention to situations in
which there are stable long-run relative frequencies
of classes of events (e.g., von Mises 1957). Fox and
Ulkiimen (2011) proposed that this historical bifurcation
of probability is mirrored by intuitive distinctions that
people naturally make between different dimensions of
uncertainty. For the purposes of this paper, we distin-
guish events whose outcomes are viewed as potentially
knowable (epistemic uncertainty) from events whose
outcomes are viewed as random (aleatory uncertainty).
We note that this distinction should be viewed as
psychological rather than ontological, and that many
judgment tasks are construed as entailing a mixture
of these two dimensions. In the current studies, we
measure perceptions of epistemic and aleatory uncer-
tainty using a short psychological scale that appears to
reliably capture this distinction.

Several lines of research suggest that people nat-
urally distinguish between epistemic and aleatory
uncertainty. For instance, 4- to 6-year-old children tend
to behave differently when facing chance events yet
to occur (in which aleatory uncertainty is presum-
ably salient) versus chance events that have already
been resolved but not yet revealed to them (in which
epistemic uncertainty is presumably salient; Robinson
et al. 2006). Meanwhile, brain imaging studies (Volz
et al. 2004, 2005) have found distinct activation pat-
terns when participants learn about events whose
outcomes were determined in a rule-based (presumably
epistemic-salient) manner compared with a stochastic
(presumably aleatory-salient) manner. Furthermore,
studies of natural language use suggest that people rely
on distinct linguistic expressions to communicate their
degree of epistemic and aleatory uncertainty (Ulkiimen
et al. 2016). In particular, they tend to use words such
as “sure” and “confident” when epistemic uncertainty
is most salient (e.g., “I am pretty sure that the capital
of California is Sacramento”), whereas they tend to
use words such as “chance” and “likelihood” when
aleatory uncertainty is most salient (e.g., “I think there
is a good chance that I'll win this hand of blackjack”).

Implications for Judgment Extremity

To see how epistemic and aleatory uncertainty might
affect judgment extremity, it is useful to consider a
simple generic account of judgment under uncertainty.
Once one has identified a target event or hypothesis
and its alternatives, one must assess the strength of evi-
dence for each hypothesis and map these impressions
onto an explicit expression of belief strength such as a
probability judgment (e.g., Tversky and Koehler 1994).
Mapping beliefs onto a probability requires one to
integrate information concerning the perceived balance
of evidence with information concerning its validity or
diagnosticity (Griffin and Tversky 1992). For instance,
when judging from a political poll how likely it is that
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a candidate will win an imminent election, a campaign
strategist should consider not only the proportion of
respondents favoring his candidate (the strength of the
evidence) but also the size, reliability, and representa-
tiveness of the poll (the weight of the evidence). Thus,
a particular impression of relative evidence strength
should be mapped onto a more extreme judgment to
the extent that the judge views this impression as a
reliable or valid signal, and should be mapped onto
a less extreme judgment to the extent that the judge
views this impression as unreliable or invalid.

The distinction between epistemic and aleatory uncer-
tainty has an obvious connection to the perceived
weight or diagnosticity of evidence. Holding infor-
mation and the level of knowledge constant, one’s
impression of relative evidence strength should appear
more valid to the extent that the underlying uncertainty
is viewed as potentially knowable, predictable, or sub-
ject to consensus among experts (epistemic uncertainty)
and less valid to the extent that the underlying uncer-
tainty is viewed as inherently random, unpredictable,
or variable (aleatory uncertainty). To illustrate, suppose
one is predicting which of two players will win a chess
match and which of two players will win a hand of
poker. Suppose further that one believes the strength
imbalance between the two players is the same in
both cases (e.g., one player is 25% stronger than his
opponent). Assuming that the judge sees the outcome
of the chess match as more inherently predictable than
the game of poker (based on the relative strength of
the two players) and sees a greater role of chance in
poker than in chess, it seems apparent that this judge
would report a higher probability that the stronger
player will prevail in chess than in poker. In short, we
predict that the same impressions of relative evidence
strength will be mapped onto more or less extreme
judgments depending on the perceived nature of the
underlying uncertainty.

Naturally, most events entail a mixture of epistemic
and aleatory uncertainty, and so the relative impact of
these dimensions on judgment extremity may depend
on where attention happens to be drawn. For example,
consider instances in which two sports teams play each
other on multiple occasions in a season. An individ-
ual game between the two teams can be viewed as
a unique, singular event—occurring on a particular
date and time, with a particular lineup of players and
coaching strategies—or as an instance drawn from
a distribution of roughly exchangeable events. If a
judge is asked to consider a matchup between the two
teams without an explicit reminder that the game is
one of multiple similar matchups, she may be apt to
focus on the predictable features of the particular event.
Viewed from this perspective, the judge may focus on
elements of the matchup that are fundamentally know-
able (notably, the relative strengths and weaknesses of

each team) when formulating her probability judgment
of which team will prevail. However, if the judge is
explicitly reminded that the game is one instance of
multiple similar matchups, she may be more apt to
think about the stochastic nature of wins and losses
and consider that outcomes will vary from occasion
to occasion even when one team is clearly stronger
than its opponent. When viewed in this light, the
judge may come to see her impression of relative team
strength as a less perfect predictor of game outcomes
and consequently report a more conservative probabil-
ity. Thus, prompting people to think about an event as
a member of a class of similar events may promote
more conservative judgment than when they naturally
consider the same event as a unique case.'

As an initial demonstration, we recruited a sample
of 75 National Basketball Association (NBA) basket-
ball fans to provide subjective probabilities for three
upcoming basketball games,” and presented the ques-
tions either in a way that might naturally prompt
consideration of singular events (highlighting epis-
temic uncertainty) or in a way designed to prompt
consideration of a distribution of similar events (high-
lighting aleatory uncertainty). For instance, in the
Chicago—Detroit matchup, the instructions were as
follows.

Singular presentation (n=34):
The Chicago Bulls will play the Detroit Pistons on March
21. What is the probability that the Bulls will win?

Distributional presentation (n = 41):

The Chicago Bulls will play the Detroit Pistons on Febru-
ary 20, March 21, and April 3. What is the probability
that the Bulls will win on March 21st?

Results of this simple demonstration are provided in
Table 1. For all three matchups, we observe greater
extremity—judgments that on average are closer to 0
and 1—in the singular presentation that omits distri-
butional cues. This difference in extremity (calculated

! Another way to think about the distributional-aleatory link is that
an aleatory mind-set implies distributional thinking: it would be
difficult to consider chance variability without thinking about a range
of possible instances that are similar in some respects. Conversely,
distributional thinking may promote an aleatory mind-set: when one
considers the target event as an instance of a distribution of similar
events, this may highlight the possibility of random variability
among outcomes.

2We recruited fans from online basketball forums and through
social networking websites (99% male, mean age = 31 years, range:
21-50 years). In return for their participation, we entered all par-
ticipants into a raffle to receive an NBA jersey of their choice.
Participants reported watching a median of 3 NBA basketball games
per week, 45 games for the season, and 10 hours per week listening
to or watching sports commentary about NBA basketball. The order
of games was presented in a randomized order for each participant,
as was the team designated as focal for each game (e.g., whether
participants judged the probability that the Bulls or the Pistons
would win).
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Table 1 Mean Judgments for Singular vs. Distributional Presentations
Mean absolute
p(Team A wins) p(Team B wins) deviation from 1/2

Team Avs. B Distributional Singular Distributional Singular Distributional Singular
Bulls vs. Pistons 0.63 0.72 0.35 0.32 0.14 0.21
Raptors vs. Hornets 0.63 0.73 0.36 0.35 0.15 0.19
Grizzlies vs. Clippers 0.60 0.61 0.42 0.38 0.09 0.14

as the absolute deviation from 1/2) was highly reli-
able® across the three games, p = 0.003, confirming our
prediction.*

Implications for Judgment Accuracy

We have hypothesized that perceptions of epistemic
and aleatory uncertainty will affect judgment extremity
through the mapping of relative evidence strength
onto degrees of belief, rather than by perturbing initial
impressions of evidence strength. Several important
implications for judgment accuracy follow from this
hypothesis. The most straightforward is that although
variation in assessments of epistemic/aleatory uncer-
tainty should affect extremity of beliefs, it should not
systematically affect participants’ ability to correctly
identify outcomes (i.e., “hit rates”). This is because
if initial impressions of evidence strength are unaf-
fected by the perceived nature of uncertainty, then
the alternative that is deemed most likely (e.g., which
of two teams will win a head-to-head match) will
also be unaffected, even as the judged probability of
that alternative is amplified toward 1 or dampened
toward 1/2.

If perceptions of epistemic and aleatory uncertainty
affect judgment extremity, but not hit rates, then this has
specific implications for the constituents of judgment
accuracy. Overall rates of accuracy can be decomposed
into distinct and interpretable components, the best
known of which are judgment calibration and resolution
(Murphy 1973). Calibration measures the extent to which
degrees of belief deviate from empirical frequencies—a
forecaster is considered well calibrated, for example, if
she assigns probabilities of 0.40 to events that occur
40% of the time, assigns probabilities of 0.60 to events
that occur 60% of the time, and so forth. Separate from
calibration is judgment resolution, or the degree to which
a forecaster reliably discriminates between different

% Since we make ex ante directional predictions, we report p-values
from one-tailed tests throughout the paper unless otherwise noted.

4 We also collected data on perceived strength of the teams in question
(which was not affected by the framing manipulation, as expected)
and the perceived epistemicness/aleatoriness of a typical professional
basketball game (which did not register a significant difference by
condition, perhaps because the question was framed too generically
or because we relied on an abbreviated scale as a result of time
constraints).

events. Whereas calibration provides a measure of how
close a judgment is to the truth, resolution provides
a measure of the information contained in a forecast.
Our earlier example of someone who always estimates
a 50% chance that any given baseball team will win
is an instance of someone whose judgments would
be well calibrated but lacking in resolution. Thus,
increasing judgment extremity while holding hit rates
constant should generally increase resolution at the
expense of calibration: resolution will tend to improve
because participants make fuller use of the probability
scale, but calibration will tend to suffer (assuming a
general propensity toward overconfidence) because
more extreme judgments will increasingly deviate
from empirical base rates. We further note that in rare
instances where people tend toward underconfidence
we would expect increased judgment extremity to
improve both resolution and calibration.

Our hypothesis that judgment extremity increases
with perceived epistemicness (and decreases with per-
ceived aleatoriness) can also help to explain prior
reports of differences in overconfidence across domains.
As other researchers have noted (Keren 1991, Wright
and Ayton 1987), studies documenting overconfidence
have typically relied on general knowledge items such
as trivia questions (e.g., Lichtenstein et al. 1982). Note
that uncertainty concerning whether one has correctly
answered a trivia question will tend to be experienced
as purely epistemic (very knowable, not very ran-
dom). Thus, the present account predicts that judgment
extremity, and therefore overconfidence, will tend to be
more pronounced for general knowledge questions
than for other domains that are seen less epistemic or
more aleatory, such as future geopolitical events or
sporting matches (Carlson 1993, Fischhoff and Beyth
1975, Howell and Kerkar 1982, Ronis and Yates 1987,
Wright 1982, Wright and Wisudha 1982). Indeed, Ronis
and Yates (1987) documented greater overconfidence
when responding to trivia questions than upcoming
professional basketball games, and Wright and Wisudha
(1982) documented greater overconfidence for trivia
questions than for then-future events. Likewise, in a
review of the overconfidence literature, Keren (1991)
noted that whenever proper calibration had been iden-
tified in prior studies, it was in connection with tasks
that involved highly exchangeable events (i.e., those
that suggest a natural class of essentially equivalent
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events), a feature that we surmise promotes distri-
butional thinking and therefore salience of aleatory
uncertainty.

Overview of Studies

In this paper we have proposed that attributions of
epistemic and aleatory uncertainty influence judgment
extremity. We emphasize that these assessments are
subjective and can vary across judgment tasks, across
individuals assessing the same task, and even within
individuals whose impressions of epistemicness or
aleatoriness vary with their state of mind. In the studies
that follow, we test all of these propositions.

We begin by providing initial evidence that judg-
ment extremity varies systematically with individual
differences in perceived epistemicness and aleatori-
ness (Study 1). We next provide a simple mathemat-
ical framework that allows us to formally test our
hypothesis about the mapping of evidence onto judged
probabilities across different domains (Study 2), within
a single judgment domain in which we manipulate
relative epistemicness and aleatoriness (Study 3), and
in a situation in which we prime participants to view a
task as more epistemic or aleatory (Study 4).

Following this exploration of judgment extremity, we
examine judgment accuracy across all relevant studies.
As predicted, we consistently find that more extreme
probability judgments entail a trade-off between differ-
ent components of judgment accuracy. In particular,
perceptions of greater epistemicness are generally
associated with increased resolution of probability
judgments (i.e., better discrimination) at the expense
of decreased calibration (i.e., greater overconfidence).
Moreover, we document that the observed pattern
of judgment extremity has different implications for
judgment accuracy (and therefore corrective strategies)
in task environments for which questions are relatively
easy versus difficult.

Study 1: Judgment Extremity Increases

with Perceived Epistemicness

For Study 1, we recruited a sample of basketball fans
and asked participants to provide subjective probabili-
ties for games in the first round of the 2015 National
Collegiate Athletic Association (NCAA) men’s college
basketball tournament. We expected individuals to
vary in their beliefs concerning the degree of epistemic
and aleatory uncertainty involved in predicting bas-
ketball games, and we expected that such differences
would covary with the extremity of their judgments. In
particular, fans who view basketball games as entailing
primarily epistemic uncertainty should provide more
extreme judgments than basketball fans who view
games as entailing primarily aleatory uncertainty. This
task provides a clean first test of our hypothesis, as the

tournament is organized around seeded rankings for
each team that serve as a natural proxy for consensus
estimates of relative team strength. Furthermore, the
first round of the tournament provides a number of
matchups between teams that vary widely in their
degree of parity (e.g., a 1st-seeded team playing a 16th-
seeded team, an 8th-seeded team playing a 9th-seeded
team), allowing us to examine judgments that should
span a wide range of probabilities.

Our sample consisted of 150 college basketball
fans (31% female, mean age = 44 years, age range:
21-76 years) who were recruited through an online
panel maintained by Qualtrics.com and who were paid
a fixed amount for their participation. For this study
and all subsequent studies, we determined sample size
in advance and terminated data collection before ana-
lyzing the results. Before starting the study, participants
were asked to report, on seven-point scales, the extent
to which they considered themselves fans of college
basketball, followed college basketball, and felt knowl-
edgeable about college basketball (e.g., 1 =not at all,
7 =very much so). Only participants who rated them-
selves at or above the midpoint to all three questions
were allowed to proceed to the study. This left us with
a sample of fans who expressed familiarity with the
judgment domain—our respondents reported watching
a median of 3.5 college basketball games per week and
a median of 25 total games for the regular season.

After the initial screening questions, participants
provided probability judgments for 28 games from
the upcoming first round of the NCAA tournament.’
For each trial, participants were reminded of each
team’s seeded ranking and judged the probability that
a designated team would beat their opponent using
a 0%-100% scale. We randomized the order of trials,
as well as the team designated as focal for each trial®
(i.e., whether participants judged p(A defeats B) or
p(B defeats A)). To incentivize thoughtful responses,
we told participants that some respondents would be
selected at random and awarded a bonus of up to
$100, in proportion to their accuracy (based on their
Brier score; see the supplemental materials available at

® This included all first-round games, excluding the four play-in
games that had yet to be played when we ran the study. Apart from
the four play-in games (two 16th seed and two 11th seed teams), this
left four each of every strength matchup (1 versus 16, 2 versus 15,
3 versus 14, etc.).

© This format for eliciting judged probabilities, sometimes referred
to as the designated form (Liberman and Tversky 1993), can be
contrasted with a forced-choice format that prompts participants
to first choose a team and then provide a probability judgment
from 0.5 to 1. We chose the designated form for eliciting beliefs
because it allows us to distinguish over-extremity (the tendency to
provide judgments that are too close to 0 or 1) from over-prediction
(the tendency to overestimate the likelihood of all events). Formats
such as two-alternative forced-choice questions cannot distinguish
between the two (see Brenner et al. 2005).
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http://dx.doi.org/10.1287 /mnsc.2015.2344 for the full
task instructions).

Next, participants were presented with three of their
earlier games, each randomly sampled from the set
of 28 games. For each game, participants rated the
degree of epistemic and aleatory uncertainty associated
with determining the outcome of the game. This was
done using a 10-item epistemic—aleatory rating scale
(EARS) that has been developed and validated else-
where (Fox et al. 2016). The scale prompted participants
to rate their agreement with a set of statements that
measured feelings of both epistemic uncertainty (e.g.,
“determining which team will win is something that
becomes more predictable with additional knowledge
or skills”) and aleatory uncertainty (e.g., “determin-
ing which team will win is something that has an
element of randomness”). For the studies reported
here, we reverse-coded the aleatory items and then
averaged all responses to form a single “epistemicness”
index. Scores on this index take on a value between 1
and 7, with higher numbers indicating a belief that the
judgment task entails primarily epistemic uncertainty
and lower numbers indicating a belief that the task
entails primarily aleatory uncertainty.” For Study 1, the
Cronbach’s o for the EARS scale was 0.70.

Following the disclosure guidelines recommended
by Simmons et al. (2011), we provide all materials and
measures used for this study, as well as all subsequent
studies, in the supplemental materials.

Study 1 Results

We hypothesized that judgments would become increas-
ingly extreme as basketball outcomes were viewed
as increasingly epistemic. To test this hypothesis, we
estimate the following linear relationship:

Extremityl.]. =a+ BlEpistemicnessij +U+vy+e;, (1)

where our dependent variable Extremity,; represents
the absolute deviation in judged probability from 1/2
by participant i for basketball game j; responses could
take on a value from 0 (a judged probability of 1/2)
to 0.50 (a judged probability of either 0 or 1). Our
primary predictor of interest, Epistemicness;, represents
the epistemicness rating by participant i for game j.
We also hold all basketball games fixed in the analysis
by including a vector of dummy variables represented

7In prior development of the EARS (Fox et al. 2016), as well as the
current application, the scale loads onto two separate dimensions.
However, in the present context—in which we predict complementary
effects of greater judgment extremity under increasing epistemic
uncertainty and decreasing aleatory uncertainty—we treat them
as a single dimension (by reverse-coding aleatory scale items) for
simplicity and ease of exposition. We obtain qualitatively identical
results if we separately analyze epistemic and aleatory subscales in
Studies 1-3; in Study 4 we supplement our analysis of the unitary
EARS with an analysis of the subscales (see Footnote 27).

Figure 1 Study 1: Relationship Between Judgment Extremity and
Rated Epistemicness
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calculated for the upper and lower quartile of responses in rated epistemicness.
Lines represent the best-fitting lines from a fractional response model.

by y; and model participants as a random effect U; to
account for nonindependence of observations within
participants. For this study and all subsequent studies,
we conducted analyses using the general linear model
described above as well as a fractional logit model
that assumes outcomes are bounded between 0 and 1
(Papke and Wooldridge 1996). We find that both models
return similar results, so for purposes of simplicity, we
report only the results from the linear model.

As predicted, judgment extremity increases with
perceived epistemicness; for every one-unit increase
in rated epistemicness (on our seven-point index),
judgment extremity was expected to increase by
3.7 percentage points® (B=0.037, SE=0.01, p < 0.001).
This pattern is illustrated in Figure 1, which plots
the median judged probabilities for the upper and
lower quartiles in rated epistemicness for each of the
16 focal seed rankings. As the figure illustrates, we see

8 To give a sense of the magnitude of this effect, the judged probability
that a given team would win their matchup increased by an average
of 4.2 percentage points per increase in seed ranking.
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Table 2 Epistemicness Ratings and Judgment Extremity in Studies 1-4
Judgment extremity
Epistemicness MAD from Median Median Proportion
M (SD) p=0.50 p>0.50 p <0.50 p=0or1
Study 1
Fourth quartile 4.97 (0.45) 0.29 0.85 0.14 0.16
Third quartile 4.35 (0.10) 0.24 0.75 0.23 0.08
Second quartile 3.87 (0.19) 0.23 0.70 0.20 0.03
First quartile 2.79 (0.48) 0.18 0.70 0.30 0.00
Study 2
Geography 6.45 (1.00) 0.29 0.80 0.10 0.28
Oceans 6.35 (1.13) 0.36 0.98 0.10 0.43
Population 5.96 (1.21) 0.33 0.90 0.10 0.15
Crime 4.52 (1.56) 0.31 0.80 0.20 0.13
Housing 3.96 (1.53) 0.20 0.70 0.30 0.02
Temperature 3.21 (1.19) 0.21 0.75 0.28 0.01
Rain 3.11 (1.27) 0.15 0.65 0.30 0.01
Movies 3.05 (1.45) 0.23 0.80 0.25 0.08
Politics 2.95 (1.15) 0.16 0.60 0.35 0.05
Baseball 2.49 (1.26) 0.11 0.65 0.30 0.02
Football 2.41 (1.03) 0.11 0.65 0.30 0.00
Soccer 2.40 (1.17) 0.10 0.65 0.40 0.02
Study 3
Yearlong average task 4.96 (1.06) 0.30 0.80 0.10 0.20
Arbitrary day task 4.35 (1.11) 0.25 0.80 0.20 0.07
Study 4
Pattern detection 4.38 (0.87) 0.21 0.76 0.25 0.02
Random prediction 4.28 (0.84) 0.18 0.70 0.30 0.01

Notes. MAD = mean absolute deviation. Average probability estimates for each question per study are reported in the supplemental materials.

more extreme judgments—both higher highs and lower
lows—for when participants viewed the NCAA tourna-
ment games as more epistemic. Indeed, our results hold
both when restricting the analysis to judgments above
1/2 and below 1/2: epistemicness ratings were posi-
tively correlated with judged probabilities above 0.50
(B=0.042, SE=0.01, p < 0.001) and negatively corre-
lated with judged probabilities below 0.50 (B = —0.029,
SE =0.01, p =0.007). Thus, it appears our results are
not driven by a tendency toward greater extremity
only when considering probable or improbable events.

We also examined the likelihood of expressing a judg-
ment of complete certainty by dichotomizing responses
into certain (i.e., a response of 0 or 1) and uncertain
judgments. Using a logit model with the same spec-
ification in Equation (1), we again found a greater
willingness to express complete certainty as a function
of rated epistemicness, with an average marginal effect’
of 5.5% (p =0.022). Summary statistics of judgment
extremity for this study, as well as all subsequent
studies, are presented in Table 2.

° The average marginal effect represents the instantaneous rate of
change in the dependent variable as a function of a predictor variable,
averaged over all observations. In the result reported above, for
example, if the rate of change was constant, then we would expect a
5.5-percentage-point increase in complete certainty responses for
every one-unit increase in epistemicness ratings.

Connecting Judgment Extremity to

Evidence Sensitivity
Study 1 demonstrates that judged probabilities were
especially extreme for individuals who viewed basket-
ball outcomes as particularly epistemic. In Studies 24,
we examine how differences in judgment extremity can
be attributed to differences in sensitivity to evidence—
that is, how people map their impressions of evidence
strength onto a judged probability. As we discussed in
the introduction, we expect that heightened perceptions
of epistemic uncertainty will lead to greater sensitivity
to differences in evidence strength (i.e., small differ-
ences in the strength of evidence between competing
hypotheses should translate into more extreme proba-
bility judgments). Conversely, heightened perceptions
of aleatory uncertainty should lead to diminished evi-
dence sensitivity and relatively regressive judgments,
holding the strength of evidence constant. Examining
evidence strength can therefore help to explain the
judgment extremity effect we observed in Study 1.
There is another important reason for investigating
evidence sensitivity. Doing so allows us to examine
judgment extremity across domains while controlling
for parity in the strength of hypotheses drawn from
each domain. To illustrate this point, suppose we asked
participants to judge the probability that various basket-
ball teams and football teams will win their upcoming
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games. More extreme probabilities for football than
basketball could reflect differences in beliefs about the
degree of epistemic and aleatory uncertainty underlying
each sport, but such differences in judgment extremity
could also simply reflect a belief that the selection of
football teams was more imbalanced than the selection
of basketball teams. Controlling for explicit ratings of
evidence strength allows us to remove this potential
confound and provides a common metric by which we
can compare judgments across domains."

Sensitivity to evidence strength can be formalized
using support theory (Tversky and Koehler 1994,
Rottenstreich and Tversky 1997). In support theory,
probabilities are attached to hypotheses, or descriptions
of events."! Each hypothesis A is associated with a
nonnegative support value, s(A). Support values can be
thought of as impressions of the strength of evidence
favoring a particular hypothesis—evoked by judgment
heuristics, explicit arguments, or other sources. Accord-
ing to support theory, judged probability is a function
of the support for a focal hypothesis relative to the
support for its complement. That is, the probability
p(A, B) that the focal hypothesis A rather than the
complementary hypothesis B obtains is given by

s(A)

PAB = @) @

Support is a latent construct that can only be inferred
from probability judgments. However, it is possible to
link hypothetical support, s(-), to a raw measure of
evidence strength, 5(-). This is accomplished by relying
on two modest assumptions that have been empirically
validated in prior research (Fox 1999, Koehler 1996,
Tversky and Koehler 1994). First, direct assessments
of evidence strength and support values (derived
from judged probabilities) are monotonically related:
S(A) = §(B) iff s(A) > s(B). Note that this condition
implies that §(A) > §(B) iff p(A, B) > 1/2. For instance,
if 5(-) refers to the strength of basketball teams and
p(A, B) is the judged probability that team A beats
team B, then this assumption merely implies that a
judge will rate team A at least as strong as team B if

10 Another reason to examine evidence sensitivity is that, within a
single domain, parity between hypotheses might otherwise affect
perceptions of epistemicness and aleatoriness. For instance, if two
teams are rated as equally strong, then a judge might view the
outcome of the game as more aleatory (random). Conversely, if
two teams are extremely unbalanced, the outcome may be seen as
more epistemic (knowable). Our measure of evidence sensitivity
explicitly controls for differences in parity of evidence strength,
thereby removing this potential confound.

' The emphasis on hypotheses, rather than events, allows for the
possibility that different descriptions of the same event can elicit
different probabilities (i.e., the framework is nonextensional). In the
present paper we assume a canonical description of events, so this
distinction will not be relevant.

and only if she judges the probability that team A will
beat team B to be at least 1/2. Second, corresponding
strength and support ratios are monotonically related:
5(A)/5(B) =5(C)/5(D) iff s(A)/s(B) = s(C)/s(D). This
assumption implies that the higher the ratio of judged
strength between the focal and alternative hypotheses,
the higher the judged probability of the focal hypothesis
relative to the alternative hypothesis. For instance, the
relative strength of team A to team B should be at least
as high as the relative strength of team C to team D if
and only if the judged probability of team A beating
team B is at least as high as the judged probability of
team C beating team D.'?

If these two conditions hold, and support values
are defined on, say, the unit interval, then it can be
shown that there exists a scaling constant k > 0 such
that measures of strength are related to support by a
power transformation of the form s(A) = §(A)* (see
Theorem 2 of Tversky and Koehler 1994). Intuitively,
one can interpret the scaling constant k as an index of
an individuals’ sensitivity to differences in evidence
strength when judging probability. This interpretation
can be seen more easily by converting probabilities into
odds. Using Equation (1), assuming all probabilities
are positive, and defining R(A, B) as the odds that A
rather than B obtains, we get

pAB) _s(4) _ [g(A)T‘ o

A G R B

We see from this equation that as k approaches 0,
R(A, B) approaches 1 and probabilities converge toward
the ignorance prior of 1/2. When k is equal to 1, we
see a linear mapping between the balance of evidence
strength S$(A)/[5(A) + 5(B)] and judged probability
p(A, B). As k increases above 1, subjective probability
will increasingly diverge to 0 or 1 as differences in
evidence strength emerge (see Figure 2). Thus, our
hypothesis implies that k should increase when tasks
are viewed as more epistemic,'® and decrease when
tasks are viewed as more aleatory.

12 Because hypothetical support, s(-), is a ratio scale, any strength
measure used as a proxy, §(-), ought to be evaluated on a ratio scale
as well. Thus, following Tversky and Koehler (1994), our strength
elicitation protocol explicitly instructs participants to assign strength
in proportion to the strongest event so that, for example, a team
that is strongest in a set would be assigned a strength of 100 and a
team that is seen as half as strong would be assigned a strength
of 50. Although not all strength measures have a natural 0 point
to establish a ratio scale (e.g., what does it mean for a team to
have zero strength?), past studies using support proxies such as
team strength have established that participants can adequately
scale strength so that the model fits quite well (e.g., Tversky and
Koehler 1994, Koehler 1996). Moreover, Fox (1999) explicitly tested
the monotonicity conditions using ratings of team strength and
found that they both held quite well.

13 A related observation about the interpretation of k was made by
Koehler (1996, p. 20): “One speculation is that the value of k may
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Figure 2 Examples of Sensitivity to Evidence Strength (k)
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Focal strength proportion: S(A)/[S(A) + 5(B)]

This formulation also allows us to easily recover k
(i.e., evidence sensitivity) from raw strength ratings
and judged probabilities. To do so, we simply take the
logarithm of both sides of Equation (2):

5(A)

InR(A, B) =kl .

4)

Thus, using Equation (4), we can empirically estimate
sensitivity to evidence strength by regressing log odds
(derived from judged probabilities) onto log strength
ratios, with the coefficient from the log strength ratio
providing an estimate of k. In the studies that follow,
we use this approach when probing for differences in
sensitivity to evidence strength.

Study 2: Differences in Evidence

Sensitivity Across Domains

In Study 2 we examined evidence sensitivity across
a wide variety of domains, with the prediction that
across-domain differences in evidence sensitivity would
be positively correlated with across-domain differences
in judged epistemicness. We recruited a sample of 205
participants from Amazon’s Mechanical Turk (MTurk)
labor market and paid them a fixed amount in return for
their participation'* (56% female, mean age = 33 years,
age range: 18-80 years). One participant reported using
outside sources (e.g., Wikipedia) to complete the task
and was dropped from the analysis. Participants first

reflect the relative predictability of the outcome variable in question.
Thus, for example, considerably lower values of k would be expected
if subjects were asked to judge the probability that the home team
will score first in the game (rather than that the home team will win
the game) because this variable is generally less predictable.” Here,
we suggest that k tracks beliefs about the nature of the uncertainty—
the extent to which the outcome is epistemic/aleatory—rather than
mere predictability.

" For all studies conducted on MTurk, we restricted the sample
to U.S. participants. Furthermore, we used software that excluded
participants who had completed any of the previous experiments
(Goldin and Darlow 2013).

provided probability judgments to 6 questions that were
randomly sampled from a pool of 12 questions, listed
in Table 3, with each question drawn from a different
topic domain. The order of trials was randomized, and
for each trial we counterbalanced which of the two
targets was designated as focal.

Next, participants provided strength ratings for the
two targets in each of their six previous estimates
(following Tversky and Koehler 1994). For each ques-
tion, participants were asked to assign a strength rating
of 100 to the stronger of the two targets and then to
scale the other target in proportion. For example, the
strength rating procedure for the football question was
as follows:

Consider the Arizona Cardinals and the San Francisco
49ers. First, choose the football team you believe is the
stronger of the two teams, and set that team’s strength
rating to 100. Assign the other team a strength rating in
proportion to the first team. For example, if you believe
that a given team is half as strong as the first team (the
one you gave 100), give that team a strength rating
of 50.

Finally, participants were again shown each of the
six events they had previously assessed and rated each
event using an abridged four-item epistemicness scale
(Cronbach’s a ranged from 0.60 to 0.87 across domains,
with an average score of 0.75; see the supplemental
materials for scale items).

Data Exclusions

For Study 2, as well as all subsequent studies, we
excluded a small number of responses where estimated
probabilities fell outside of the 0-100 range or where
participants provided a strength rating of 0 to either
the focal or alternative target.”” Such responses suggest
a misunderstanding of the task scale and are not
directly interpretable (i.e., cannot be analyzed without

15 Although participants were allowed to express very small strength
numbers, in no case did we present them with hypotheses that could
plausibly be associated with vacuous strength.
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Table 3 Study 2A Questions

Domain Question

Rain Consider the weather in Chicago and Minneapolis. What is
the probability that there will be more rainy days next May
in Chicago than in Minneapolis?

Consider the weather in Portland and Pittsburgh. What is
the probability that the daytime high temperature next
June 1st will be higher in Portland than in Pittsburgh?

Assume that Barack Obama will face Mitt Romney in the
2012 presidential election. What is the probability that
Barack Obama will beat Mitt Romney?

The San Francisco 49ers will play the Arizona Cardinals on
October 29th. What is the probability that the San
Francisco 49ers will beat the Arizona Cardinals?

The Chicago Cubs will play the Los Angeles Dodgers on
August 3rd. What is the probability that the Chicago Cubs
will beat the Los Angeles Dodgers?

Consider two upcoming summer movies, The Amazing
Spider-Man and The Dark Knight Rises. What is the
probability that The Amazing Spider-Man will gross more
money on its opening weekend than The Dark Night
Rises?

Consider housing prices in Nashville and Atlanta. What is the
probability that a randomly selected house in Nashville
will be more expensive than a randomly selected house in
Atlanta?

Consider crime rates in Detroit and Columbus. What is the
probability that the number of violent crimes per capita
this year will be higher in Detroit than in Columbus?

Consider the geographic size (in square miles) of Nevada
and Wyoming. What is the probability that Nevada is
larger than Wyoming?

Consider the urban population of Istanbul, Turkey and
Shanghai, China. What is the probability that Istanbul has
a larger urban population than Shanghai?

Suppose the ltalian national soccer team plays Germany this
summer in the European Cup. What is the probability Italy
will beat Germany?

Consider the size (in square miles) of the Atlantic Ocean and
Indian Ocean. What is the probability that the Atlantic
Ocean is larger than the Indian Ocean?

Temperature

Politics

Football

Baseball

Movies

Housing

Crime

Geography

Population

Soccer

Oceans

retransforming the data). We also excluded participants
whose judgments revealed negative evidence sensitivity,
which mostly likely implies inattentive responding—
taking negative k estimates seriously would mean
that participants find hypotheses with less relative
evidence strength more probable than hypotheses with
greater relative evidence strength. These exclusion rules
required us to drop no more than 9% of participants
per study (18 participants in Study 2, 12 participants
in Study 3, and 6 participants in Study 4). For all
studies, retaining these “problematic” participants in
the analysis does not qualitatively change the results.

Analysis Strategy

For Studies 24, we test for judgment extremity in a
manner similar to Study 1 by estimating the following
relationship:

Extremity,, = a+ B, Treatment, + U; +v; + €,  (5)

where Extremity,, represents the absolute deviation
in judged probability from 1/2 by participant i for
question j in treatment k. Treatment, represents the
treatment variable of interest. In Study 2, this term
represents a set of indicator variables for each judgment
domain; in Studies 3 and 4, the treatment variable rep-
resents an indicator variable for the specific judgment
task. We always include participant random effects,
denoted by U;, to account for nonindependence of
observations within participants. When appropriate,'®
we also control for variation in question items by
modeling them as fixed effects, denoted by ;.

In Studies 2—4, we also test for differences in sensi-
tivity to evidence strength. As discussed earlier, an
analysis of evidence sensitivity allows us to more
rigorously account for the nature of events in our
sample and their distribution (e.g., an analysis of
evidence sensitivity controls for domain-level differ-
ences in parity of strength ratings). As suggested by
Equation (4), we estimate evidence sensitivity by first
transforming judged probabilities into log odds'’ (i.e.,
In[p(A, B)/(1—-p(A, B))] for judgments p(A, B)), and we
regress log odds onto the log strength ratios for the
hypotheses under consideration (i.e., In[5(A)/5(B)]):

LogOdds = o+ 3,LogStrength + €. (6)

In Equation (6), the observed coefficient for LogStrength
can be interpreted as an index of evidence sensitivity,
with higher numbers indicating greater sensitivity.'
Because in all studies we are interested in examining
differences in evidence sensitivity across our treatment
variable(s) of interest, this requires we estimate the
following relationship:

LogOdds ;. = o+ B,LogStrength,; + B, Treatment,
+ BsLogStrength,; x Treatment,
+ Ui+, + € 7)

16Tn Study 2 there is only one question per domain, so including a
question fixed effect term would be redundant with the treatment
term.

17 Because the regression analysis required transforming probability
judgments into log odds, responses of 0 and 1 were compressed
by substituting them with 0.5/N and [N —0.5]/N, respectively, for
sample size N, as suggested by Smithson and Verkuilen (2006).

18 Although not the primary focus of the current research, the intercept
in our model can also be interpreted as an index of response bias.
A key assumption of support theory is binary complementarity, which
states that judgments to two-alternative outcomes are additive (i.e.,
p(A, B) +p(B, A) =1). Thus, if binary complementarity holds, then
we should not expect any appreciable degree of response bias (i.e.,
the intercept should not differ substantially from 0). Consistent with
support theory, we found that the intercept term in all studies, with
the exception of Study 3, did not reliably differ from 0. More direct
tests of binary complementarity are provided in the supplemental
materials.
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where LogOdds,;, represents the log odds by participant i
for question j in treatment k. LogStrength,; represents
the log strength ratio by participant i for question j.
Treatment, is a vector of indicator variables representing
the treatment variable of interest. We are interested in
examining differences in evidence sensitivity across
treatment conditions, so we include a vector of interac-
tion terms, denoted by LogStrength;; x Treatment,, that
model the change in the strength ratio coefficients as a
function of our treatment variable(s). Thus, estimating
the model above allows us to recover estimates of
evidence sensitivity for each treatment condition by
calculating the slope of LogStrength conditional on that
treatment. Again, we include participant random effects
and question fixed effects in the analysis.

Study 2 Results

Table 2 lists the average epistemicness rating by domain,
along with indices of judgment extremity. As the table
clearly shows, domains higher in epistemicness also
tended to exhibit greater judgment extremity. For each
domain, we calculated the mean absolute deviation
from 1/2 (the second data column of Table 2), and
we correlated these values with corresponding epis-
temicness ratings (the first data column of Table 2). As
expected, the correlation was positive and substantial
(r=0.91, p < 0.001). We obtain similar results when
restricting the analysis to judgments above 0.50, below
0.50, or of 0 and 1 (p-values less than0.001).

Next, we calculated and recovered estimates of evi-
dence sensitivity separately for each domain using
the specification detailed in Equation (7). We then
correlated these estimates with each domain’s mean
epistemicness rating. Figure 3, which plots this relation-
ship, indicates that sensitivity to differences in evidence
strength was generally higher for domains entailing
greater epistemic uncertainty (r = 0.88, p < 0.001). Using
the predicted point estimates from the model, we
would expect to see a 4.3-fold increase in evidence
sensitivity when going from the domain lowest in
epistemicness to the domain highest in epistemicness
(i.e., a larger effect than going from the second panel
in Figure 2 to the fourth panel).

The above analysis examined the correspondence
between rated epistemicness and judgments across
domains; the design of Study 2 also allowed us to exam-
ine this relationship within individuals. For judgment
extremity, we calculated the rank-order correlation
between each participants” absolute deviation from
1/2 (for judged probability) and the corresponding
epistemicness ratings. Similar to before, we predict a
positive correlation between rated epistemicness and
judgment extremity, and we observe that 81% of our
participants exhibited a positive relationship between
their judgment extremity and epistemicness ratings
(p <0.001 by a sign test), with a median correlation

11
Figure 3 Study 2: Relationship Between Evidence Sensitivity (k) and
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of p=0.52. We also conducted a similar analysis for
evidence sensitivity by calculating an analytic, rather
than estimated, measure of evidence sensitivity for each
observation" (i.e., dividing LogOdds, by LogStrength,,
for question j by participant i), and then we computed
the rank-order correlation between each participants’
evidence sensitivity and epistemicness ratings. Here,
we observe even larger effects than those found for
judgment extremity: 94% of our participants exhibited
a positive relationship between evidence sensitivity
and epistemicness ratings (p < 0.001 by a sign test),
with a median correlation of p =0.77.

The results of Study 2 suggest that across-domain
differences in evidence sensitivity vary systematically
with differences in perceived epistemicness. We note,
however, that these differences were estimated from
a single question per domain, and so it is possible
that we happened to sample idiosyncratic questions
from each domain that gave rise to our results. In the
supplemental materials, we report the findings from a
follow-up study (Study 2S) that focused on a smaller
number of domains but more exhaustively sampled
target events within each domain. We selected three
judgment domains expected to span the range of per-
ceived epistemicness—geography questions, weather

¥ An estimated measure of evidence sensitivity for each participant
per domain was not possible, since participants were merely asked
to provide a single judgment per domain. Note that the analytic
measure requires us to exclude a small number of observations
(n=20) where participants judged the focal and alternative targets to
be equally strong (since this places a value of 0 in the denominator).
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estimates, and upcoming NBA basketball games—and
participants provided probability judgments to 16
questions per domain. Consistent with the results of
Study 2, we found that both judgment extremity and
evidence sensitivity followed the same rank ordering as
epistemicness ratings across domains (using a variety
of estimation techniques). Thus, the pattern we observe
in Study 2 is robust to a more thorough sampling of
stimulus questions.

Study 3: Manipulating Diagnostic Value
of Evidence Strength

Study 2 demonstrates that domains entailing rela-
tively greater epistemic uncertainty are associated with
greater evidence sensitivity and, consequently, greater
judgment extremity. One limitation of this study is
that different domains require different measures of
evidence strength, and it is therefore unclear to what
extent the (unobserved) measurement error associ-
ated with the elicitation of strength ratings accounts
for observed differences in evidence sensitivity. For
instance, consider the strength rating measure we
used when participants judged the probability that
one football team would beat another—namely, the
relative overall strength of each team. Suppose that
we had instead asked about the relative strength of
each coaching staff. In this case we surely would have
recovered lower values of the k parameter. It is possible
that the raw measures of evidence strength we selected
for more epistemic domains in Study 2 were, for what-
ever reason, more appropriate proxies of hypothetical
support.?’ Thus, it would be desirable to replicate our
analysis for events that are matched in their natural
measure of strength but for which we experimentally
manipulate epistemicness of the criterion judgment.
Such a test would allow us to more carefully exam-
ine whether individuals’ perceptions of epistemicness
across matched domains predict differences in their
sensitivity to evidence and extremity of judgment.

To that end, in Study 3 we asked participants on each
trial to estimate the probability that one of two U.S.
cities had a higher daytime high temperature. In two
separate blocks of trials, participants compared cities
according to (a) their average temperature from the
previous year and (b) an arbitrarily selected day over
the same time interval. Naturally, global impressions
of evidence strength—in this case, that one city is
“warmer” than another—should be more diagnostic
of yearlong averages than of single days, since there
is greater fluctuation in temperatures over individual
days than over an average of a collection of days. For
this reason, yearlong average questions should be seen

2 Or they were more reliably evaluated on a ratio scale—see Foot-
note 11.

Table 4 Study 3 Sample Questions

Task format Sample question

Yearlong What is the probability that the average temperature last
average year was higher in Anchorage than in Indianapolis?

Arbitrary day What is the probability that the temperature of an

arbitrarily selected day from last year was higher in
Anchorage than in Indianapolis?

by most participants as more epistemic than single-day
questions about the same pairs of cities, and we should
generally observe more extreme judged probabilities
for yearlong average questions than for single-day
questions. More interesting is the question of whether
individual differences in perceived epistemicness across
the two tasks accounts for corresponding differences in
judgment extremity and evidence sensitivity.”!

Study 3 Methods

We recruited a sample of 199 participants from MTurk
who were paid a fixed amount in return for their
participation (52% female, mean age =37 years, age
range: 19-70 years). One participant was removed for
reporting that he or she used external sources while
completing the survey.

All participants completed two blocks of probability
judgments, with blocks presented in a random order.
For trials in the yearlong average block, participants were
asked to estimate the probability that one of two U.S.
cities had a higher average temperature in the previous
year. For trials in the arbitrary day block, participants
were asked to estimate the probability that one of
two cities had a higher temperature on an arbitrarily
selected day from the previous year.?? Table 4 provides
sample questions. Each block consisted of 15 trials
(by forming all pairwise comparisons between six
cities) that were presented in a random order. For each

2 Note that the design of Study 3 bears an interesting relationship to
our short demonstration (discussed in the introduction) in which
participants judged probabilities that various teams would win
specific NBA matchups. In both that study and in Study 3 we predict
judgments should be especially regressive when an event is viewed
as an instance from a distribution of similar events. Highlighting
the distributional nature of an event should focus attention on the
possible variation across similar occasions and lead individuals
to view an event as more aleatory. In our NBA demonstration,
this was accomplished by prompting individuals to think about
a particular game as one of a series of contests between the two
teams. For Study 3, by contrast, we prompt aleatory thinking by
asking individuals to consider city temperatures for an “arbitrarily
selected day” from the previous year. We surmise that the arbitrarily
selected single-day task is more apt to be construed as an instance
from a larger set of similar events than judgments about average city
temperatures over a year.

2 The reason we used the language “arbitrary day” rather than
“randomly selected day” is that the latter might cause a demand
effect when participants rate events on the EARS (one of the items
uses the word “random”).
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trial, the city designated as focal was counterbalanced
between participants but remained fixed within par-
ticipants across the two blocks. Upon completing the
15 trials within a given block, participants rated the
task epistemicness of three randomly selected trials
using a 10-item EARS measure similar to that used in
Study 1. After responding to both judgment blocks,
participants provided strength ratings for the six cities
in a manner similar to Study 2.

Study 3 Results

As expected, the yearlong average task was rated
on average as entailing greater epistemicness than
the arbitrary day task (means were 4.96 and 4.35,
respectively; p < 0.001). Analyzing the data within
participants, 69% of our respondents rated the former
as higher in epistemicness than the latter (p < 0.001 by
a sign test).

Consistent with our hypothesis, we also observed
greater judgment extremity in the yearlong average
task than in the arbitrary day task (see Table 2); the
mean absolute deviation was 4.8 percentage points
higher when judging yearlong averages than arbitrarily
selected days (B =0.048, SE =0.006, p < 0.001). Partici-
pants also displayed greater judgment extremity across
the two tasks when restricting the analysis to judg-
ments above 0.50 or below 0.50, or when dichotomizing
responses into certain versus uncertain judgments (all
p-values less than 0.001). Analyzing the data within
participants, 75% of individual respondents displayed
greater mean absolute deviation in their judgments
of yearlong averages than arbitrarily selected days
(p <0.001 by a sign test).

We estimated average evidence sensitivity for the
two tasks in a manner similar to what we used in
Study 2. Consistent with our judgment extremity results,
participants displayed greater evidence sensitivity
when responding to yearlong averages than arbitrarily
selected days® (estimated k values were 2.17 and 1.53,
respectively; B=0.63, SE =0.05, p < 0.001). We also
examined within-participant differences in evidence
sensitivity by calculating each participant’s evidence
sensitivity score for the two tasks and found that 69%
of participants displayed greater evidence sensitivity in
the yearlong average task than in the arbitrary day
task (p < 0.001 by a sign test).

Recall that the main aim of Study 3 was to identify
whether variation in impressions of relative epistemic-
ness across the two tasks explained concomitant shifts
in evidence sensitivity. At the trial level, our predic-
tion would imply a positive interaction effect between
strength ratings and perceived epistemicness—the slope

% These results also hold when analyzing evidence sensitivity over
participants or over items, rather than over trials as we did in the
foregoing analysis.

on strength ratings, which represents our estimate of
evidence sensitivity, should increase as perceived epis-
temicness increases. Accordingly, we regressed log odds
onto log strength ratios, epistemicness ratings, and the
interaction between the two. Accordingly, we regressed
log odds onto log strength ratios, epistemicness ratings,
and interaction between the two (i.e., similar to the
model in Equation (7), but with epistemicness ratings
replacing the treatment variable?*). As expected, we
found a reliable and positive interaction effect (B =0.23,
SE =0.06, p < 0.001). At the participant level, we exam-
ined this by first calculating, for each respondent, the
difference in the respondent’s degree of evidence sensi-
tivity between the two tasks (A = Kyuerage — Kappitrary day) @S
well as the difference in epistemicness ratings between
the two tasks (A, iemicness)- Thus, we would predict a
positive correlation between A and A, iepicness—those
who show the largest shifts in rated epistemicness
across tasks should also show the largest shifts in evi-
dence sensitivity. As predicted, we observe a positive
and significant correlation between the two difference
scores (r =0.24, p < 0.001). Likewise, a nonparametric
analysis reveals that for 63% of participants, evidence
sensitivity and perceived epistemicness were rank
ordered identically across the two tasks (i.e., the signs
of A; and A coincided; p < 0.001 by a binomial
test).

epistemicness

Study 4: Priming Epistemic and
Aleatory Uncertainty

In Study 3, we varied a dimension of the judgment task
that we expected to influence perceived epistemicness
and therefore extremity of judgment. In Study 4, we
investigate an even more subtle manifestation of this
phenomenon: whether we can prime people to see a
fixed event as more or less epistemic and therefore
make more or less extreme probability judgments. Such
a demonstration would provide an even stronger test of
the causal relationship between perceived epistemicness
and evidence sensitivity.

To manipulate participants” predisposition to see
events in the world as more epistemic or more aleatory,
we asked them to perform a simple binary predic-
tion task with an unknown distribution. In these
“two-armed bandit” environments, there is a well-
documented tendency for an individual’s choice propor-
tions to match the relative frequencies with which each
option delivers a favorable outcome (i.e., probability
matching; Herrnstein 1997). Although this behavior is
commonly viewed as suboptimal (because choosing
the higher expected value option on every trial will

2 Epistemicness ratings were measured at the trial level for each
participant. Similar to our previous analyses, we include question
fixed effects and participant random effects in the model.
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maximize earnings), recent research has suggested that
the switching behavior inherent to probability matching
may reflect an effort to discern underlying patterns in a
task that is seen as not entirely random (Gaissmaier and
Schooler 2008, Goodnow 1955, Unturbe and Corominas
2007, Wolford et al. 2004). Accordingly, we varied
the task instructions to either promote pattern seek-
ing (thereby making epistemic uncertainty salient) or
promote thinking about the relative frequencies of
stochastic events (thereby making aleatory uncertainty
salient). Our purpose was to see whether perceptions
of epistemicness versus aleatoriness on the two-armed
bandit task would carry over to a second, ostensibly
unrelated task, and if we would observe concomitant
shifts in judgment extremity and evidence sensitivity.

Study 4 Methods

We recruited 100 students from a subject pool at the
University of California, Los Angles. Each student was
paid a fixed amount for participating (82% female,
mean age =20 years, age range: 16-58 years).

The study consisted of four phases. In the first
phase, participants completed a binary prediction
task where, for each trial, they predicted whether an
X or an O would appear next on the screen. This
task served as our experimental prime, and our key
manipulation was to vary how this first phase of the
study was described to participants. In the pattern
detection condition, participants were introduced to a
“pattern recognition task” and were given the following
instructions:

On each trial, you will try to predict which of two
events, X or O, will occur next. The sequence of Xs and
Os has been set in advance, and your task is to figure
out this pattern.

In the random prediction condition, participants were
introduced to a “guessing task” and were given the
following instructions:

On each trial, you will try to guess which of two events,
X or O, will occur next. The order of Xs and Os will be
randomly generated by a computer program, and your
task is to guess which outcome will appear next.

After 10 practice trials, all participants completed
the same 168 trials divided into two blocks of 84 trials.
Because half of participants thought there was a pattern
and half did not, we presented half of the trials with
a pattern and half without; in one block participants
viewed trials that were generated randomly, whereas in
the other block trials followed a fixed 12-digit pattern
(e.g., XXOXOXXXOOXX; see Gaissmaier and Schooler
2008, for a similar design). The underlying proportion
of X’s and O’s was the same in both blocks, with a 2:1
ratio for the more common letter. The letter designated
as more common, as well as the order of the two blocks
was counterbalanced across participants. Participants

received feedback about the accuracy of their prediction
after each trial. To incentivize thoughtful respond-
ing, we notified participants that the most accurate
respondent would receive a bonus payment of $25.
Performance on this task did not vary systematically
by either the priming instructions or the ordering of
the two trial blocks.”

In the second phase of the study, participants pro-
vided 28 probability judgments to upcoming weather-
related events in eight U.S. cities (which served as the
primary dependent variable). For each trial, participants
were presented with two cities (sampled from a pool
of eight), with one city designated as focal. Participants
indicated the probability that the focal city would have
a higher daytime high temperature on the following
July 1. The order of these trials was randomized, and
the city designated as focal was counterbalanced across
participants.

In the third phase, participants provided strength
ratings (in terms of each city’s relative “warmth”) for
the eight cities, using the same procedure as before. In
the final phase of the study, participants were presented
with three randomly selected trials from the second
phase, and they rated each question on the 10-item
EARS used in previous studies (average Cronbach’s
a=0.70).

Study 4 Results

As predicted, probability judgments were more extreme
when participants were primed with pattern detection
than random prediction (see Table 2). Using mean abso-
lute deviation from 1/2, judgments were on average
2.9 percentage points more extreme for the pattern
detection task than the random prediction task (B =
0.029, SE =0.016, p = 0.035). We also observed greater
judgment extremity when restricting the analysis to
judgments above 0.50 (B =0.035, SE =0.015, p =0.01)
or below 0.50 (B=—0.035, SE =0.017, p =0.021), and
we also observed a directional but nonsignificant dif-
ference when dichotomizing responses into certain
versus uncertain judgments (p = 0.11). This last null
result is likely because participants reported a complete
certainty judgment in only 1% of all trials.

Most important, we observed greater sensitivity to
evidence strength in the pattern detection task than
in the random prediction task. Calculating evidence
sensitivity in a manner similar to previous studies, we
find greater evidence sensitivity when primed with
pattern detection than random prediction® (estimated
k values were 1.44 versus 0.97, B=0.47, SE = 0.23,
p =0.021).

% The ordering of the two binary prediction blocks also did not
systematically affect judgment extremity or evidence sensitivity.

% Similar to Study 3, these results also hold when analyzing evidence
sensitivity over participants and over items, rather than over trials
as we did in the foregoing analysis.
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As a manipulation check, we examined average
epistemicness scores for each task. Questions were
viewed as entailing more epistemic uncertainty when
participants were prompted to seek patterns than when
they were prompted to guess, although this difference
was not statistically significant (means were 4.39 and
4.27, respectively; p =0.22).7

Finally, we examined the relationship between epis-
temicness and sensitivity to evidence strength. This
was done at the trial level by probing for a positive
interaction between strength ratings and perceived
epistemicness—the coefficient of the log strength ratio,
which is an estimate of evidence sensitivity, should
increase as perceived epistemicness increases. We
regressed log odds onto log strength ratios, epistemic-
ness ratings, and interaction between the two in a
manner similar to Study 3. As expected, we found
a positive interaction term (B=0.16, SE=0.10, p =
0.053). Based on the regression coefficients, k would
be expected to increase from 0.93 to 1.20 when going
from one standard deviation below to one standard
deviation above the mean in perceived epistemicness.

General Discussion

The current research provides strong evidence that
judgment is more extreme under uncertainty that is
perceived to be more epistemic (and less aleatory).
We observed this pattern among basketball fans who
differed in their perceptions of the epistemicness of
college basketball games (Study 1), across judgment
domains that differ markedly in their perceived epis-
temicness (Study 2), in a judgment domain for which
we manipulated the degree of randomness with which
events were selected (Study 3), and when participants
were experimentally primed to focus on epistemic or
aleatory uncertainty (Study 4). These results suggest
that lay intuitions about the nature of uncertainty may
have downstream implications for judgment and choice.
In what follows, we discuss theoretical extensions and
implications.

% We separately examined epistemic and aleatory items from the scale
and found that the correlation between these two indices was weaker
than in all of our other studies (r = —0.21). We proceeded to analyze
each subscale separately and found no reliable difference in ratings
on the epistemic subscale (means were 4.72 and 4.81, respectively;
p = 0.69) but a significant difference in the expected direction
on the aleatory subscale (means were 4.10 and 4.55, respectively;
p =0.028). That is, participants viewed questions as higher in aleatory
uncertainty for the random prediction prime than for the pattern
detection prime. Furthermore, we examined the relationship between
epistemicness and sensitivity to evidence strength using only the
aleatory subscale, and we observed an even stronger effect than that
reported above using the full EARS (p =0.005 for the interaction
term).

Epistemicness and Judgment Accuracy
As outlined in the introduction, judgment extremity
may also have implications for different components of
judgment accuracy.”® To examine this, we calculated
accuracy scores for the three studies that were amenable
to an analysis of judgment accuracy® (Studies 1, 2,
and 4). The most commonly used measure of overall
accuracy is the quadratic loss function suggested by
Brier (1950), which we refer to as the mean probability
score (PS). The procedure for calculating PS can be
described as follows. Let 0; be an outcome indicator
that equals 1 if event o occurs on the ith occasion and
0 otherwise, and let f; be the forecasted probability of
event o on the ith occasion. The mean probability score
is given by
— 1
S= N -

M=

(fi—0)% ®)

1

where N denotes the total number of trials. Probability
scores take a value between 0 and 1, with lower scores
indicating greater accuracy.

For Studies 1, 2, and 4, we regressed probabil-
ity scores onto epistemicness ratings. We conducted
all analyses at the trial level using a fractional
response model (which accommodates responses that
are bounded between 0 and 1; Papke and Wooldridge
1996), with question items treated as fixed effects and
standard errors clustered by participants.*’ The first
data column of Table 5 provides the average marginal

% Because when initially undertaking this analysis we did not make
ex ante directional predictions about judgment accuracy, we report
two-tailed test statistics for these analyses.

#Study 3 was excluded from the analysis because half of the
questions involved estimating upcoming temperatures for arbitrarily
selected days from the previous year, which poses difficulties for
calculating accuracy scores. The most natural way to code outcomes
for this task would be to use the base rate over the estimation interval
(e.g., the proportion of warmer days in city A over city B during a
one-year period), but doing so dramatically reduces the outcome
variance compared with yearlong average questions where outcomes
are coded as 0 or 1. Thus, interpreting any differences in judgment
accuracy across domains is problematic because perceptions of
epistemicness will be conflated with task difficulty (i.e., outcome
variability). Study 25 was not included in the analysis for the same
reason and also because judgments of basketball games—which
made up one-third of the stimulus items in the study—were based
on possible matchups that were not always realized (e.g., “Suppose
the San Antonio Spurs play the Philadelphia 76ers in the NBA
finals...”) and thus could not be scored.

®When analyzing judgment extremity earlier on, we chose to
report estimates from linear models rather than from fractional
response models because both approaches provided similar results
and the former was simpler to convey. We chose to use fractional
response models here because, unlike our earlier analyses, many
of the observations for components of judgment accuracy (such as
calibration and resolution scores) lie at or near the scale boundary
of 0. As a result, using a linear model produced estimates that were
often out of range. We note that using linear models instead returns
similar results to those reported above.
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Table 5 Predicting Different Components of Judgment Accuracy from
Perceived Epistemicness
Probability Proportion
scores correct Calibration Resolution
Study 1 0.013 —0.021 0.002++* 0.007+
(0.012) (0.024) (0.000) (0.002)
Study 2 0.005 —0.006 0.002+** 0.002+
(0.005) (0.010) (0.000) (0.001)
Study 4 0.018 0.027 0.003** 0.006*
(0.013) (0.032) (0.001) (0.002)

Notes. Estimates represent average marginal effects from fractional models,
with participant-clustered robust standard errors reported in parentheses.
All models include question item fixed effects, and all models cluster stan-
dard errors by participants. For probability and calibration scores, positive
coefficients are associated with decreased accuracy. For resolution, positive
coefficients are associated with increased accuracy.

=+ = and * indicate significance at 0.001, 0.01, and 0.05, respectively.

effects for expected probability scores in each study, and
Table 6 reports summary statistics for each quartile of
rated epistemicness. All three studies return a positive
coefficient—suggesting that inaccuracy increased with
judged epistemicness—but this relationship was never
statistically reliable, as there was considerable noise
surrounding these estimates. As indicated in the second
data column of Table 5, we also failed to find reliable
differences in the proportion of correct judgments (i.e.,
hit rates) as a function of epistemicness.”!

These results may at first seem puzzling in light of
our robust findings concerning judgment extremity. To
summarize, perceptions of epistemicness were asso-
ciated with more extreme probability judgments but
not associated with a reliable increase or decrease in
accuracy as measured by Brier scores. As previewed in
the introduction, this puzzle is resolved when we parti-
tion probability scores into interpretable components.
Following Murphy (1973), we decompose probability
scores as follows:

J
PS = 5(1—5)+%Zn,.(fj—6j)2
j=1

1 ]
-~ 2. n;(0; - 0)* )
N =
=V+C-—R,

in which judgments are grouped into | equivalence
classes or bins. In the above equation, n; is the number
of times the judged probability falls into bin j, o; is

31 Hit rates were calculated for each judgment by assigning a score
of 1 when participants provided a judged probability above 0.50
and the event occurred, or a probability below 0.50 and the event
failed to occur. Participants were assigned a score of 0 when judged
probability was below 0.50 and the event occurred, or above 0.50
and the event failed to occur. For responses of 0.50, we randomly
assigned responses as correct or incorrect (see Ronis and Yates 1987).

the frequency of events in that class, and 0 is the
overall relative frequency of the event. For our analyses,
judged probabilities were partitioned into bins of 10
(i.e., judgments of 0-0.10, 0.11-0.20, etc.).

The first term on the right-hand side of Equation (9)
represents outcome variance (V), or the degree to
which the outcome varies from trial to trial. Outcome
variance is usually interpreted as an indicator of task
difficulty, and therefore it does not directly speak
to judgment accuracy. The second term represents
judgment calibration (C), or the degree to which actual
hit rates deviate from a class of judged probabilities.
The third term represents judgment resolution (R), or
the degree to which a forecaster reliably discriminates
between events that do and do not occur. Whereas
calibration provides a measure of how close a judgment
is to the truth, resolution provides a measure of the
information contained in a forecast. Note that superior
performance is represented by lower scores on C and
higher scores on R.

Returning to the previous results, we decomposed
probability scores to separately analyze calibration and
resolution. As before, we conducted analyses at the trial
level using a fractional response model with question
item fixed effects and standard errors clustered by
participants. The average marginal effects from the
regressions are displayed in the last two columns of
Table 5, and the results are summarized in Table 6. For
all three studies, a consistent pattern emerges. Higher
epistemicness ratings were associated with inferior
performance on calibration but superior performance
on resolution (because calibration and resolution are
scored in opposing directions, positive coefficients
imply better calibration but worse resolution).

These results reconcile our finding of no signifi-
cant association between perceived epistemicness and
overall accuracy (PS) with our finding of a robust asso-
ciation between epistemicness and judgment extremity.
On the one hand, heightened perceptions of epis-
temicness hurt performance by reducing calibration:
participants were generally overconfident, and this
tendency was exacerbated by more extreme judgments.
On the other hand, heightened perceptions of epis-
temicness helped performance by improving resolution,
as participants were more sensitive to differences in
evidence strength across events; holding hit rates con-
stant, greater sensitivity should improve discrimination
in judgments. Thus, the null effect on overall accuracy
reflects the fact that the increase in resolution exhibited
by participants who saw events as more epistemic
(and less aleatory) was roughly canceled out by a
corresponding decrease in calibration. Participants who
saw events as primarily epistemic were both more
and less accurate than participants who saw events as
primarily aleatory, depending on the type of accuracy.
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Table 6 Average Probability Score (PS), Calibration (C), and Resolution (R) Scores as a Function of Judged Epistemicness
Study 1 Study 2 Study 4

Epistemicness PS c R PS c R PS c R
Fourth quartile 0.214 0.008 0.070 0.196 0.020 0.059 0.223 0.012 0.042
Third quartile 0.247 0.005 0.056 0.245 0.011 0.047 0.233 0.006 0.027
Second quartile 0.174 0.004 0.053 0.212 0.008 0.036 0.217 0.007 0.029
First quartile 0.192 0.002 0.039 0.228 0.006 0.025 0.203 0.004 0.025

Notes. Epistemic quartiles are ordered from high (fourth quartile) to low (first quartile). For probability and calibration scores, lower numbers indicate greater

accuracy. For resolution, higher numbers indicate greater accuracy.

Epistemicness, Overconfidence, and Task Difficulty
If perceptions of epistemicness do not affect hit rates but
influence judgment extremity (as shown in the previous
section), then we should expect heightened perceptions
of epistemic and aleatory uncertainty to improve perfor-
mance under different task conditions (e.g., easy versus
difficult questions; Erev et al. 1994). For task environ-
ments that lead to overconfidence—such as difficult
questions—the judgment extremity associated with
perceptions of high epistemicness should amplify over-
confidence (diminish accuracy) whereas the regressive-
ness associated with perceptions of low epistemicness
should attenuate overconfidence (improve accuracy).
This pattern should reverse for task environments
that typically lead to underconfidence—such as easy
questions—where the judgment extremity associated
with high epistemicness should reduce underconfi-
dence (improve accuracy), whereas the regressiveness
associated with low epistemicness should amplify
underconfidence (diminish accuracy). Thus, we would
expect overall accuracy (PS) to be affected by the inter-
action between perceptions of epistemicness and task
difficulty.

To test this prediction, we once again examined the
three studies that were amenable to an analysis of
judgment accuracy. For each study, we regressed prob-
ability scores onto item difficulty (operationalized as
the total proportion of correct responses per question),
perceptions of epistemicness, and the interaction term.
In all analyses, we used a fractional response model
with standard errors clustered by participants. The
results are depicted in Figure 4, where predicted mean
probability scores are plotted against task difficulty at
low, medium, and high levels of perceived epistemic-
ness (one standard deviation below the mean, at the
mean, and one standard deviation above the mean,
respectively). The graphs show a general downward
trend in expected probability scores as the proportion of
correct responses increases, reflecting the fact that accu-
racy improves as task questions become less difficult.
More important, in all three cases we found a reliable
interaction effect that conforms to the expected pattern
of results (p =0.029 for Study 1 and p < 0.001 for
Studies 2 and 4). Perceptions of greater epistemicness
were usually associated with superior calibration for

easy questions (lower PS) but inferior calibration for
difficult questions (higher PS). As predicted, differences
in perceptions of epistemic and aleatory uncertainty
resulted in enhanced accuracy under different task
conditions.

An interesting avenue for future research will be to
determine whether insights gleaned from the epistemic-
aleatory distinction can be leveraged to formulate
interventions or elicitation techniques to improve judg-
ment accuracy. For example, the current results suggest
that for domains in which forecasters typically display
overconfidence, one may wish to highlight the aleatory
uncertainty inherent to the judgment task, whereas for
domains in which forecasters typically display under-
confidence, one may wish to highlight the epistemic
uncertainty inherent to the judgment task. We note
that an established technique for reducing overconfi-
dence has been to prompt disconfirmatory thinking
(“consider the opposite”)—when individuals are first
asked to think of how an event could have turned out
differently than expected, their subsequent judgments
tend to be less overconfident (Arkes et al. 1988, Koriat
et al. 1980, Hoch 1985). We suspect that considering
alternative outcomes increases the salience of aleatory
uncertainty—it makes the target event appear more
random and less predictable—which in turn leads to
more regressive judgments and therefore attenuates
overconfidence. Although existing research has not to
our knowledge examined interventions for reducing
systematic underconfidence, we expect procedures that
highlight the inherent knowability of an uncertain event
(i.e., increasing the salience of epistemic uncertainty)
may be a fruitful approach.

Variability in Assessments of Evidence Strength

Brenner and colleagues (Brenner 2003, Brenner et al.
2005) developed a random support model of subjective
probability that provides an alternative approach to
modeling variability in judgment extremity. Random
support theory posits that judgment extremity arises
from variability in the evidence that a judge recruits for
the same hypothesis on different occasions. The idea is
that support is randomly drawn from a log-normal
distribution, with greater variability in this distribution
resulting in more extreme judgment. Brenner (2003)
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Figure 4 Accuracy as a Function of Task Difficulty and Judged Epistemicness
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provided empirical evidence for this interpretation
by showing that variability in support distributions
(measured using strength ratings as we have done)
were strongly associated with more extreme probability
judgments. This finding motivated us to reexamine
our data to see whether between-subject variability in
strength ratings (which following Brenner 2003, we
used as an empirical proxy for within-subject variance
in support distributions) could account for our results.

Study 4 allows for the most direct test of the random
support model, as this study was conducted between
participants and held the strength elicitation format
constant across experimental task conditions. We con-
ducted robust tests of variance with adjustments made
for clustered data (Levene 1960, Iachine et al. 2010).
For completeness, we conducted tests using the mean
absolute difference, median absolute difference, and
10% trimmed mean absolute difference in strength
ratings, and we performed these tests on the variance
in strength ratios, §(A)/5(B), as well as separately for
variance in focal and alternative strength ratings (5(A)
and §(B), respectively). For all tests, we failed to find
any reliable differences across conditions: p-values
were always above 0.10 (with an average p-value of
0.46 across all tests), and the observed R? from every
test was always less than 0.01. In short, our experi-
mental conditions had a reliable influence on judg-
ment extremity in a way that could not be accounted
for by differences in the variability of strength
ratings.

Knowledge and Sensitivity to Evidence Strength
Our analysis of the relationship of raw strength ratings
and judged probabilities relies on the original formula-
tion of support theory. However, support theory does
not directly account for the fact that people vary in their
levels of knowledge or expertise. For example, people
give more regressive probability estimates when they
feel relatively ignorant about the task at hand (e.g., Yates
1982) and often report probabilities of 1/2 when they
feel completely ignorant (Fischhoff and Bruine De Bruin
1999). It may be that levels of subjective knowledge
interact with the effects we report here. For example, if
participants feel ignorant or uninformed about a task,
they are likely to provide highly regressive judgments
regardless of the degree of perceived epistemicness.
More generally, one might suppose that the impact
of perceived epistemicness on judgment extremity is
attenuated in situations where people feel relatively
ignorant and amplified in situations where they feel
relatively knowledgeable (Fox and Ulkiimen 2011).
Future work can explore this prediction by using an
extension of support theory that incorporates reliance
on ignorance prior probabilities (i.e., probabilities that
assign equal credence to every hypothesis into which
the state space is partitioned; Fox and Rottenstreich
2003, Fox and Clemen 2005, See et al. 2006). For instance,
Fox and Rottenstreich (2003) propose a model in which
probability judgments are represented as a convex
combination of evidence strength and the ignorance
prior probability (i.e., 1/n for n-alternative questions).
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In this model the judged odds R(A, B) that hypothesis
A obtains rather than its complement B are given by

The second expression on the right-hand side of Equa-
tion (10) represents the balance of support as measured
by raw strength ratings, akin to the original support
theory formulation presented in Equation (3). The
first expression on the right-hand side represents the
ignorance prior (in odds format) for the focal hypoth-
esis A relative to the alternative hypothesis B. For
two-alternative questions this implies odds of 1:1, for
three-alternative questions this implies odds of 1:2, and
so forth. The parameter A represents the proportion
of weight afforded the ignorance prior relative to the
support ratio, and takes a value between 0 and 1. As A
approaches 1, more weight is placed on the balance
of evidence (i.e., support values); as A approaches 0,
judgments converge toward the ignorance prior. One
can interpret A as an indicator of subjective knowledge.
When people feel relatively ignorant, they are likely
to afford more weight on the ignorance prior; when
people feel relatively knowledgeable, they tend to give
less weight to the ignorance prior and increasingly
rely on subjective impressions of relative evidence
strength. Finally, k" measures (partition-independent)
sensitivity to differences in evidence strength (note that
k in Equation (3) has now been decomposed into A
and k').

The ignorance prior model makes a clear prediction
concerning the interaction between subjective knowl-
edge and perceptions of epistemicness on sensitivity
to evidence: the tendency for evidence sensitivity to
increase with perceived epistemicness should be ampli-
fied when participants are more knowledgeable (i.e.,
when they rely less on the ignorance prior) and should
be attenuated when participants are less knowledgeable
(i.e., when they rely more on the ignorance prior).

For exploratory purposes, we asked participants at
the end of our studies to rate their level of knowledge®
for each judgment domain. For the two studies in
which we asked participants to rate their knowledge
separately for each domain or task and where we could
statistically estimate evidence sensitivity over partici-
pants for those domains/tasks (Studies 2S and 4), we
examined the interaction between epistemicness and
subjective knowledge on evidence sensitivity. For each
study, we recovered sensitivity coefficients for each par-
ticipant and then regressed these estimates onto each

% For Study 4, knowledge was assessed on a 11-point scale from 0
(not knowledgeable at all) to 10 (very knowledgeable). For Study 2S,
we assessed knowledge in a similar manner but using a 100-point
scale, which we subsequently transformed (by multiplying responses
by 0.1) for purposes of comparison.

participants’ epistemicness ratings, self-reported knowl-
edge, and the interaction term. In Figure 5, we plot
for each study evidence sensitivity for low, medium,
and high epistemicness ratings (one standard deviation
below the mean, at the mean, and one standard devia-
tion above the mean) across the range of subjective
knowledge ratings. As predicted by the ignorance prior
model (and anticipated by Fox and Ulkiimen 2011),
we see a general “fanning-out” effect as knowledge
increases—differences in evidence sensitivity between
high and low perceived epistemicness were most pro-
nounced when knowledge was high. The interaction
term between rated epistemicness and task knowledge
was in the predicted direction for both studies (p-values
were 0.104 and 0.055 for Studies 25 and 4, respectively),
and the overall p-value was 0.035 by Fisher’s combined
probability test. Additional evidence consistent with the
notion that the level of subjective knowledge moderates
the relationship between epistemicness and evidence
sensitivity, based on internal analyses of Studies 1
and 2, are reported in the supplemental materials.

Although consistent with the ignorance prior model,
these results should be treated as tentative. The mea-
surement approach for subjective knowledge was
considerably more coarse (i.e., a single-item self-report
measure) than were values for sensitivity to evidence
strength (which were derived from multiple trials of
judgments and strength ratings). Future work could
more rigorously test the knowledge amplification pre-
diction by independently manipulating the ignorance
prior alongside the measurement of probability judg-
ments and strength ratings (for an example of this
approach that did not include epistemicness ratings,
see See et al. 2006).

Interpretations of Epistemic Extremity

In this paper, we have suggested that the tendency
for more extreme judgments under more epistemic
uncertainty is driven by a tendency to see the balance
of evidence as more diagnostic of outcomes under
these conditions. We note that perceptions of epistemic
and aleatory uncertainty are subjective and may not
necessarily agree with the actual predictability or
randomness of events in the task environment. For
one thing, individuals sometimes fail to appreciate
the stochastic nature of events they perceive as highly
epistemic. Prior research has noted that overconfidence
often occurs because people formulate judgments that
are conditional on their beliefs or model of the world
being true, and they fail to acknowledge the possibility
that their interpretations and knowledge may be off
(Dunning et al. 1990, Griffin et al. 1990, Trope 1978).
When uncertainty is perceived to be more aleatory, an
individual may be more likely to make “inferential
allowances” (i.e., more regressive judgments) because
viewing events as aleatory highlights the role of chance



Tannenbaum, Fox, and Ulkiimen: Variants of Uncertainty

20 Management Science, Articles in Advance, pp. 1-22, ©2016 INFORMS
Figure 5 Sensitivity to Evidence Strength as a Function of Subjective Knowledge and Judged Epistemicness
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processes in determining an outcome. Under epistemic
uncertainty, however, that same individual may instead
focus on what she knows and thus fail to appreciate
that her beliefs could be incorrect or partly determined
by stochastic factors (e.g., that the information retrieval
process underlying impressions of evidence strength is
subject to random noise). In short, for epistemic but
not aleatory uncertainty, people may confuse absence
of doubt in their beliefs about an event with the belief
that an event is undoubtedly true.

Another possible and complementary mechanism
driving increased judgment extremity under more
epistemic uncertainty is the notion that purely epistemic
events (e.g., the correct answer to a trivia question) are
either true or false whereas pure aleatory events (e.g.,
whether a fair die will land on a prime number) have
intermediate propensities. To illustrate, consider the
purely epistemic question of whether one country is
geographically larger than another. Given a person’s
impression of the relative sizes of these two countries,
his judged probability of this event should quickly
approach 0 or 1 as this impression becomes increasingly
distinct. Next, consider a purely aleatory event such
as whether a roulette wheel will land on one of the
numbers that another person has bet on. This question
entails an event that has a “true” propensity that may
lie anywhere along the [0, 1] probability interval. In

this case, even if the other person has bet on nearly
every available number, her judged probability should
remain less than 1. We conjecture that because of the
principles of stimulus-response compatibility (Fitts and
Seeger 1953, Wickens 1992), events that are seen as
more epistemic may more naturally tend toward 0 or 1
than events that are seen as more aleatory.

Support for this notion can be found in a previ-
ous finding from Ronis and Yates (1987), in which
participants expressed judgments of complete cer-
tainty (judged probabilities of 0 or 1) on 25% of their
responses to trivia questions, compared with only
1.3% of responses to basketball games. Extending this
finding, our own data show a consistent pattern that
0 and 1 responses are more common for events that
were rated as more epistemic (see the final column of
Table 2).

Conclusion

Experts and laypeople confront uncertainty every day.
Whether evaluating an investment, forecasting a geopo-
litical outcome, or merely assessing whether it is safe
to cross the street, individuals must evaluate the like-
lihood of events that can be construed to varying
degrees as knowable or random. In this paper, we
have documented a general tendency for judgments
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to be more extreme when they are seen as more epis-
temic and less extreme when they are viewed as more
aleatory. We have observed that such differences in
judgment extremity may also help to explain a number
of stylized findings from the literature on judgment
accuracy and overconfidence, and consequently, they
may inform procedures and elicitation techniques for
improving judgment accuracy.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /mnsc.2015.2344.
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