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We develop a belief-based account of decision under uncertainty. This model predicts de-
cisions under uncertainty from (i) judgments of probability, which are assumed to satisfy
support theory; and (ii) decisions under risk, which are assumed to satisfy prospect theory. In
two experiments, subjects evaluated uncertain prospects and assessed the probability of the
respective events. Study 1 involved the 1995 professional basketball playoffs; Study 2 involved
the movement of economic indicators in a simulated economy. The results of both studies are
consistent with the belief-based account, but violate the partition inequality implied by the clas-

sical theory of decision under uncertainty.

(Decision Making; Risk; Uncertainty; Expected Utility; Prospect Theory; Support Theory; Decision

Weights; Judgment; Probability)

1. Introduction
It seems obvious that the decisions to invest in the stock
market, undergo a medical treatment, or settle out of
court depend on the strength of people’s beliefs that the
market will go up, that the treatment will be successful,
or that the court will decide in their favor. It is less ob-
vious how to elicit and measure such beliefs. The classi-
cal theory of decision under uncertainty derives beliefs
about the likelihood of uncertain events from people’s
choices between prospects whose consequences are con-
tingent on these events. This approach, first advanced by
Ramsey (1931)," gives rise to an elegant axiomatic theory
that yields simultaneous measurement of utility and sub-
jective probability, thereby bypassing the thorny prob-
lem of how to interpret direct expressions of belief.
From a psychological (descriptive) perspective, the clas-
sical theory can be questioned on several counts. First, it
does not correspond to the common intuition that belief
precedes preference. People typically choose to bet $50 on
team A rather than team B because they believe that A is

! The notion that beliefs can be measured based on preferences was
anticipated by Borel (1924).
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more likely to win; they do not infer this belief from the
observation that the former bet is more attractive than the
latter. Second and perhaps more important, the classical
theory does not consider probability judgments that could
be useful in explaining and predicting decisions under un-
certainty. Third, and most important, the empirical evi-
dence indicates that the major assumptions of the classical
theory that underlie the derivation of belief from prefer-
ence are not descriptively valid.

This article develops a belief-based account in which
probability judgments are used to predict decisions un-
der uncertainty. We first review recent work on proba-
bility judgment and on the weighting function of pros-
pect theory that serves as the basis for the present de-
velopment. We next formulate a two-stage model of
decision under uncertainty, and explore its testable im-
plications. This model is tested against the classical the-
ory in two experiments. Finally, we address some em-
pirical, methodological, theoretical, and practical issues
raised by the present development.

2. Theoretical Background
There is an extensive body of research indicating that peo-
ple’s choices between risky prospects depart systematically
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from expected utility theory (for a review, see Camerer
1995). Many of these violations can be explained by a non-
linear weighting function (see Figure 1) that overweights
low probabilities and underweights moderate to high
probabilities (Kahneman and Tversky 1979, Tversky and
Kahneman 1992, Prelec 1998). Such a function accounts
for violations of the independence axiom (the common
consequence effect) and the substitution axiom (the com-
mon ratio effect), first demonstrated by Allais (1953). It
also accommodates the commonly observed fourfold pat-
tern of risk attitudes: risk seeking for gains and risk aver-
sion for losses of low probability, together with risk aver-
sion for gains and risk seeking for losses of high proba-
bility (Tversky and Kahneman 1992). Finally, it is
consistent with the observed pattern of fanning in and
fanning out in the probability triangle (Camerer and Ho
1994, Wu and Gonzalez 1998a).

Although most empirical studies have employed
risky prospects, where probabilities are assumed to be
known, virtually all real-world decisions (with the no-
table exception of games of chance) involve uncertain
prospects (e.g., investments, litigation, insurance)
where this assumption does not hold. In order to model
such decisions we need to extend the key features of the

Figure 1 Weighting Function for Decision under Risk, w(p)
= exp(—B(-In p)®), with « = 0.7, 8 = 1 (Prelec 1998)
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risky weighting function to the domain of uncertainty.
Tversky and Wakker (1995) established such a gener-
alization, within the framework of cumulative prospect
theory, by assuming that an event has more impact on
choice when it turns an impossibility into a possibility
or a possibility into a certainty than when it merely
makes a possibility more or less likely.

Formally, let W denote the weighting function de-
fined on subsets of a sample space S, where W(¢) = 0
and W(S) = 1. W satisfies bounded subadditivity if:

(i) W(A) = W(A U B) — W(B), and

(i) W(S) — W(S — A) = W(A U B) — W(B),
provided A and B are disjoint and W(B) and W(A U B)
are bounded away from 0 and 1, respectively.? Condi-
tion (i) generalizes the notion that increasing the prob-
ability of winning a prize from 0 to p has more impact
than increasing the probability of winning from 4 to g
+ p, provided q + p < 1. This condition reflects the
possibility effect. Condition (ii) generalizes the notion
that decreasing the probability of winning from 1 to 1
— p has more impact than decreasing the probability of
winning from q + p to g, provided g > 0. This condition
reflects the certainty effect. Note that risk can be viewed
as a special case of uncertainty where probability is de-
fined via a standard chance device so that the probabil-
ities of outcomes are known.

Tversky and Fox (1995) tested bounded subadditivity
in a series of studies using both risky prospects and un-
certain prospects whose outcomes were contingent on up-
coming sporting events, future temperature in various cit-
ies, and changes in the Dow Jones index. The data satisfied
bounded subadditivity for both risk and uncertainty. Fur-
thermore, this effect was more pronounced for uncertainty
than for risk, indicating greater departures from expected
utility theory when probabilities are not known. The re-
sults of these experiments are consistent with a two-stage
model in which the decision maker first assesses the prob-
ability P of an uncertain event A, then transforms this
value using the risky weighting function,® w.

2 The boundary conditions are needed to ensure that we always com-
pare an interval that includes an endpoint to an interval that is
bounded away from the other endpoint (see Tversky and Wakker 1995
for a more rigorous formulation).

3 We use the lower case w to denote the weighting function for risk
and the upper case W to denote the weighting function for uncertainty.
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In the present article we elaborate this two-stage
model and investigate its consequences. To simplify
matters, we confine the present treatment to simple
prospects of the form (x, A) that pay $x if the target
event A obtains, and nothing otherwise.* We assume
that the overall value V of such prospects is given by

V(x, A) = v(x)W(A) = v(x)w[P(A)], (M

where v is the value function for monetary gains, w is
the risky weighting function, and P(A) is the judged
probability of A. The key feature of this model, which
distinguishes it from other theories of decision under
uncertainty, is the inclusion of probability judgments.
Note that if W(A) can be expressed as w[P(A)], as im-
plied by Equation (1), we can predict decisions under
uncertainty from decisions under risk and judgments of
probability. We further assume that risky choices satisfy
prospect theory® (Kahneman and Tversky 1979, Tver-
sky and Kahneman 1992) and that judged probabilities
satisfy support theory (Tversky and Koehler 1994, Rot-
tenstreich and Tversky 1997), a psychological model of
degree of belief to which we now turn.

There is ample evidence that people’s intuitive prob-
ability judgments are often inconsistent with the laws
of chance. In particular, different descriptions of the
same event often give rise to systematically different re-
sponses (e.g., Fischhoff et al. 1978), and the judged
probability of the union of disjoint events is generally
smaller than the sum of judged probabilities of these
events (e.g., Teigen 1974). To accommodate such find-
ings, support theory assumes that (subjective) proba-
bility is not attached to events, as in other models, but
rather to descriptions of events, called hypotheses; hence,
two descriptions of the same event may be assigned dif-
ferent probabilities. Support theory assumes that each
hypothesis A has a nonnegative support value s(A) cor-
responding to the strength of the evidence for this hy-
pothesis. The judged probability P(A, B), that hypoth-
esis A rather than B holds, assuming that one and only
one of them obtains, is given by:

* The two-stage model has not yet been extensively tested for multiple
nonzero outcomes; however, see Wu and Gonzalez (1998c) for a pre-
liminary investigation.

% For the simple prospects considered here, the separable and cumu-
lative versions of the theory are identical.
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___s(A4)
P(4,B) = s(A) + s(B)’ @)
where
$(A) = 5(A; V Ay) = s(A1) + s(Ay), (3)

provided (A;, A;) is recognized as a partition of A.

In this theory, judged probability is interpreted as the
support of the focal hypothesis A relative to the alter-
native hypothesis B (equation 2). The theory further as-
sumes that (i) unpacking a description of an event A
(e.g., homicide) into disjoint components A; V A, (e.g.,
homicide by an acquaintance, A;, or homicide by a
stranger, A,) generally increases its support, and (ii) the
sum of the support of the component hypotheses is at
least as large as the support of their disjunction (Equa-
tion (3)). The rationale for these assumptions is that (i)
unpacking may remind people of possibilities that they
have overlooked, and (ii) the separate evaluation of hy-
potheses tends to increase their salience and enhance
their support.

Equation (2) implies binary complementarity: P(A, B)
+ P(B, A) = 1. For finer partitions, however, Equations
(2) and (3) imply subadditivity: the judged probability
of A is less than or equal to the sum of judged proba-
bilities of its disjoint components. These predictions
have been confirmed in several studies reviewed by
Tversky and Koehler (1994). For example, experienced
physicians were provided with medical data regarding
the condition of a particular patient who was admitted
to the emergency ward, and asked to evaluate the prob-
abilities of four mutually exclusive and exhaustive
prognoses. The judged probability of a prognosis (e.g.,
that the patient will survive the hospitalization) against
its complement, evaluated by different groups of phy-
sicians, summed to one, in accord with binary comple-
mentarity. However, the sum of the judged probabilities
for the four prognoses was substantially greater than
one, in accord with subadditivity (Redelmeier et al.
1995).

Implications

Perhaps the most striking contrast between the two-
stage model and the classical theory (i.e., expected util-
ity theory with risk aversion) concerns the effect of par-
titioning. Suppose (4, ..., A,) is a partition of A, and
C(x, A) is the certainty equivalent of the prospect that
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pays $x if A occurs, and nothing otherwise. The classical
theory implies the following partition inequality:

C(x, A) + -+ + C(x, A,) = C(x, A), (4)

for all real x and A C S. That is, the certainty equivalent
of an uncertain prospect exceeds the sum of certainty
equivalents of the subprospects (evaluated indepen-
dently) obtained by partitioning the target event. In the
context of expected utility theory, the partition inequal-
ity is implied by risk aversion.® However, if people fol-
low the two-stage model, defined in Equation (1), and
if the judged probabilities are subadditive, as implied
by support theory, then the partition inequality is not
expected to hold. Such failures are especially likely
when the curvature of the value function (between 0
and $x) is not very pronounced and the target event (A)
is partitioned into many components. Thus, the parti-
tion inequality provides a simple method for testing the
classical theory and contrasting it to the two-stage
model.

To test the two-stage model, we predict the certainty
equivalent of an uncertain prospect, C(x, A), from two
independent responses: the judged probability of the
target event, P(A), and the certainty equivalent of the
risky prospect, C(x, P(A)). It follows readily from Equa-
tion (1) that

if P(A) = p, then C(x, A) = C(x, p). (5)

This condition provides a method for testing the two-
stage model that does not require an estimation of the
value function. The following two studies test the par-
tition inequality and compare the predictions derived
from Equation (5) to those of the classical theory.

3. Experiments

Study 1: Basketball Playoffs
Method

Participants. The participants in this study were 50
students at Northwestern University (46 men, 4 women;

®To demonstrate, set u(0) = 0. Hence, C(x, A;) + -+ + C(x, A,)
= u w@AA)) + -+ uT (wEx)A)) = w7 (w(x)AA)) = Cx, A)
if u is concave. We use ? to denote an additive probability measure,
to be distinguished from P, that denotes judged probability.
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median age = 20) who responded to fliers calling for
fans of professional basketball to take part in a study of
decision making. Subjects indicated that they had
watched several games of the National Basketball As-
sociation (NBA) during the regular season (median
= 25). They received $10 for completing a one-hour ses-
sion and were told that some participants would be se-
lected at random to play one of their choices for real
money and that they could win up to $160.

Procedure. The experiment was run using a com-
puter. All subjects were run on the same day, during
the beginning of the NBA quarterfinals. Subjects were
given detailed instructions and an opportunity for su-
pervised practice. The study consisted of four tasks.

The first task was designed to estimate subjects’ cer-
tainty equivalents (abbreviated C) for risky prospects.
These prospects were described in terms of a random
draw of a single poker chip from an urn containing 100
chips numbered consecutively from 1 to 100. Nineteen
prospects of the form ($160, p) were constructed where
p varied from 0.05 to 0.95 in multiples of .05. For ex-
ample, the ($160, .25) prospect would pay $160 if the
number of the poker chip is between 1 and 25, and noth-
ing otherwise.

Each trial involved a series of choices between a pros-
pect and an ascending series of sure payments (e.g., re-
ceive $40 for sure). The order of the 19 risky prospects
was randomized separately for each subject. Certainty
equivalents were inferred from two rounds of such
choices. The first round consisted of nine choices be-
tween the prospect and sure payments that were spaced
evenly from $0 to $160. After completing the first round
of choices, a new set of nine sure payments was pre-
sented, spanning the narrower range between the low-
est payment that the subject had accepted and the high-
est payment that the subject had rejected (excluding the
endpoints). The program enforced dominance and in-
ternal consistency within a given trial. For example, the
program did not allow a respondent to prefer $30 over
a prospect and also prefer the same prospect over $40.
The program allowed subjects to backtrack if they felt
they had made a mistake in the previous round of
choices.

For each risky prospect, C was determined by linear
interpolation between the lowest value accepted and the
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highest value rejected in the second round of choices,
yielding a margin of error of = $1.00. Note that although
our analysis is based on C, the data consisted of a series
of choices between a given prospect and sure outcomes.
Thus, respondents were not asked to generate C; it was
inferred from their choices.

The second task was designed to estimate certainty
equivalents for uncertain prospects. Each prospect offered
to pay $160 if a particular team, division, or conference
would win the 1995 NBA championship. At the time of
the study, eight teams remained (Chicago, Indiana, Or-
lando, New York, Los Angeles, Phoenix, San Antonio,
Houston) representing four divisions (Central, Atlantic,
Pacific, Midwestern) and two conferences (Eastern, West-
ern). Fourteen prospects of the form ($160, A) were con-
structed that offered to pay $160 if a particular team, di-
vision, or conference were to win the 1995 NBA champi-
onship. For example, a typical prospect would pay $160 if
the Chicago Bulls win the championship. The elicitation
method was identical to that of the first task.

The third task was designed to provide an indepen-
dent test of risk aversion that makes no assumptions
regarding the additivity of subjective probabilities or
decision weights. Subjects were presented with a
““fixed” prospect of the form ($a, 0.25; $b, 0.25; $0, 0.50)
and a ““variable” prospect of the form ($c, 0.25; $x, 0.25;
$0, 0.50). These prospects were displayed as “‘spinner
games” that would pay the designated amount depend-
ing on the particular region on which the spinner would
land. In each trial, the values of a, b, and ¢ were fixed,
while the value of x varied. The initial value of x was
set equal to b. Eight such pairs of prospects were con-
structed (see Table 1), presented in an order that was
randomized separately for each subject. On each trial,
participants were asked to indicate their preference be-
tween the prospects. When a subject preferred the fixed
prospect, the value of x increased by $16; when a subject
preferred the variable prospect, the value of x decreased
by $16. When a subject’s preference switched from the
fixed prospect to the variable prospect or from variable
to fixed, the change in x reversed direction and the in-
crement was cut in half (i.e., from $16 to $8, from $8 to
$4, and so forth) until the increment was $1. This pro-
cess was repeated until the subject indicated that the
two prospects were equally attractive. The program did
not allow subjects to violate dominance.
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Table 1 Values of a, b, and c Used in the Spinner Games of Study 1
and Median Value of Subjects’ Responses (x)
Fixed Prospect Variable Prospect
Probability 0.25 0.25 0.50 0.25 0.25 0.50
Outcome $a $b $0 $c $x $0
(Median)

1) 50 100 25 131

2) 30 60 10 86.5

3) 20 90 40 70

4) 10 110 35 82

5) 85 55 120 31

6) 50 45 75 29

7) 95 25 70 42

8) 115 15 80 43

The fourth task required participants to estimate the
probability of each target event (i.e., that a particular
team, division, or conference would win the NBA play-
offs). The fourteen events were presented in an order
that was randomized separately for each subject. On
each trial, subjects could respond by either typing a
number between 0 and 100, or by clicking and dragging
a “slider” on a visual scale.

Subjects performed two additional tasks. They judged
the probability that one team rather than another would
win the NBA championship assuming that two partic-
ular teams reach the finals, and they rated the
“strength” of each team. These data are discussed in Fox
(1998).

Results

Judged Probability. The median judged probability
for each target event is listed in Figure 2. The figure
shows that the sum of these probabilities is close to one
for the two conferences, nearly one and a half for the
four divisions, and more than two for the eight teams.
This pattern is consistent with the predictions of sup-
port theory that

YP=3P =

teams divisions

2P, (6)
conferences
and the sum over the two conferences equals one. More-
over, in every case the sum of the probabilities for the
individual teams is greater than the probability of the
respective division, and the sum of the probabilities for
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Figure 2 Median Judged Probabilities for All Target Events in Study 1
Conference Division Team
40
Chicago
.39
Central
Indiana
25
.52
Eastern
.35
Orlando
Atlantic
40
NY
24
.05
LA
25
Pacific
Phoenix
30
Western
.50
.40
SA
Midwestern
40
Houston
.19
z 1.02 1.44 2.18

the divisions is greater than the probability of the re-
spective conference, consistent with support theory.”

The same pattern holds in the analysis of individual
subjects. The median sum of probabilities for the eight
teams was 2.40, the median sum for the four divisions
was 1.44, and the median sum of probabilities for the
two conferences was 1.00. Moreover, 41 of 50 respon-
dents satisfied Equation (6) with strict inequalities, and
49 of 50 respondents reported probabilities for the eight
teams that summed to more than one (p < 0.001 by sign
test in both cases).

Certainty Equivalents. Figure 3 presents the median
normalized C for each prospect; that is, the median cer-
tainty equivalent divided by $160. The choice data in
Figure 3 echo the judgment data in Figure 2. In every
case, the sum of Cs for the individual teams is greater
than C for the respective division, and the sum of Cs for
the divisions is greater than C for the respective confer-

7 In every case this also holds for a significant majority of subjects (p
< 0.01 by sign tests).
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Figure 3 Median Normalized Certainty Equivalents for All Prospects in
Study 1
Conference Division Team
31
Chicago
31
Central
Indiana
18
.46
Eastern
31
Orlando
Atlantic
31
NY
.18
.06
LA
.31
Pacific
Phoenix
.26
Western
49
.38
SA
Midwestern
31
Houston
13
z .95 1.24 1.81

ence.? Furthermore, the sum of Cs for the 8 teams ex-
ceeds $160; that is, the sum of the normalized Cs is
greater than one.

Again, the same pattern holds in the analysis of in-
dividual subjects. The median sum of normalized Cs for
the 8 teams was 2.08, the median sum for the 4 divisions
was 1.38, and the median sum for the 2 conferences was
0.93. Moreover, the pattern implied by the partition in-
equality (Equation (4)):

YC= YC=

teams divisions

%G,

conferences

was satisfied by only one respondent, whereas 41 of the
50 respondents satisfied the reverse pattern that is con-
sistent with the two-stage model (p < 0.001):

>YC> YC> YC.

teams divisions conferences

8In every case this also holds for a significant majority of subjects (p
< 0.01).
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Furthermore, only 5 subjects produced Cs for the 8
teams that summed to less than $160, whereas 44 sub-
jects produced Cs that summed to more than $160 (p
< 0.001). This pattern violates the partition inequality,
with A = S.

Comparing Models. We next compare the fit of the
classical theory to that of the two-stage model. For each
event A, we observed the median judged probability
P(A), then searched for the median C of the risky pros-
pect (x, p) where p = P(A). For example, the median
judged probability that the San Antonio Spurs (SAS)
would win the NBA championship was 0.40, and the
median value of C($160, .40), was $59. According to
Equation (5), therefore, C($160, SAS) should equal $59;
the actual value was $60. In cases where the P(A) is not
a multiple of 5 percent, we determined the certainty
equivalent by linear interpolation.

To fit the classical theory, let C, be the certainty
equivalent of the prospect ($160, A). Setting u(0) = 0,
the classical theory yields #(C,) = u(160)P(A), where u
is concave and P(A) is an additive (subjective) proba-
bility measure. Hence, P(A) = u(C,)/u(160). Previous
studies (e.g., Tversky 1967, Tversky and Kahneman
1992) have indicated that the value function for small
to moderate gains can be approximated by a power
function of the form u(x) = x* a > 0. To estimate the
exponent, we used data from the “‘spinner games” de-
scribed above. If a subject is indifferent between the
fixed prospect ($a, 0.25; $b, 0.25; $0, 0.5) and the variable
prospect ($c, 0.25; $x, 0.25; $0, 0.5) then assuming a
power utility function, a* + b* = ¢* + x*. Because 4, b,
and ¢ are given and the value of x is determined by the
subject, one can solve for @ > 0. The exponent for each
subject was estimated using the median value of a over
the eight problems listed in Table 1. This analysis
showed that participants were generally risk-averse: 32
subjects exhibited a < 1.00 (risk aversion); 14 exhibited
a = 1.00 (risk neutrality); and 4 exhibited a > 1.00 (risk
seeking) (p < 0.001 by sign test). The median response
to each of the eight trials yielded a = 0.80. The finding
that the majority of subjects exhibited risk aversion in
this task shows that the violations of the partition in-
equality described earlier cannot be explained by a con-
vex utility function.

Subjective probabilities were estimated as follows.
For each elementary target event A, we computed (C,/
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Figure 4 Median Certainty Equivalents of Bets for All Eight Teams, and
Predictions of Two-Stage Model and Classical Theory (with o
= 0.80)

70

—e— Data
—6- Two-stage model
-8~ Expected Utility

60
Certainty

Equivalent 50
(in $)
30

20

10 4

0 1ttt
LA Hou NY Ind Pho Orl Chi SA
Team

160)* and divided these values by their sum to ensure
additivity. Figure 4 displays the median C for each of
the eight teams along with the predictions of the two-
stage model and the standard theory (assuming o
= 0.80, based on the median response to each item). It
is evident from the figure that the two-stage model fits
the data (mean absolute error = $5.83) substantially bet-
ter than does the standard theory (mean absolute error
= $23.71).° The same pattern is evident in the responses
of individual subjects. The two-stage model fits the data
better than does the classical theory for 45 of the 50 sub-
jects (p < 0.001).

Note that the predictions of the two-stage model were
derived from two independent tasks; no parameters
were estimated from the fitted data. In contrast, the pre-
dictions of the classical theory were derived by esti-
mating a parameter for each of the fitted data points;
these estimates were constrained only by the require-
ment that the subjective probabilities sum to unity. In
light of the substantial advantage conferred to the clas-
sical theory in this comparison, its inferior fit provides
compelling evidence against the additivity of subjective
probabilities that are inferred from choice.

Studies of Unpacking. We have attributed the failure
of the partition inequality to the subadditivity of judged

? A more conservative test of the standard theory assuming o = 1.00
yields a mean absolute error of $13.29.

885



FOX AND TVERSKY
Belief-Based Account of Decision Under Uncertainty

probability that is implied by support theory. A more rad-
ical departure from the classical theory is suggested by the
unpacking principle of support theory, according to which
unpacking the description of an event into an explicit dis-
junction of constituent events generally increases its
judged probability. Under the two-stage model, therefore,
unpacking the description of an event is also expected to
increase the attractiveness of a prospect whose outcome
depends on this event. Furthermore, if this effect is suffi-
ciently pronounced, it can give rise to violations of mono-
tonicity where C(x, A) < C(x, A, V -+ V A,) even when
AV -+ V A, is a proper subset of A.

To explore this possibility, we presented a brief ques-
tionnaire to 58 business students at Northwestern Univer-
sity shortly before the beginning of the 1996 NBA playoffs.
The survey was administered in a classroom setting. Prior
to the survey, respondents were presented with the rec-
ords of all NBA teams listed by their division and confer-
ence. Subjects were randomly assigned to one of two
groups. Subjects in the first group (N = 28) stated their
certainty equivalent for two prospects: a prospect that of-
fered $75 if the winner of the 1996 playoffs belongs to the
Eastern conference, and a prospect that offered $75 if one
of the four leading Western conference teams (Seattle,
Utah, San Antonio, or Los Angeles) would win the 1996
playoffs. Subjects in the second group (N = 30) stated their
certainty equivalent for the two parallel prospects: a pros-
pect that offered $75 if the winner of the 1996 playoffs
belongs to the Western conference, and a prospect that
offered $75 if one of the four leading Eastern conference
teams (Chicago, Orlando, Indiana, or New York) would
win the 1996 playoffs."® Each group also assessed the prob-
ability of the two target events that defined the prospects
evaluated by the other group. For example, the group that
evaluated the prospect that would pay if an Eastern team
will win assessed the probability that a Western team will
win, and vice versa.

Table 2 presents the median judged probability and
certainty equivalent for the two conferences, and the
four leading teams in each conference. Although these
teams had the best record in their respective confer-
ences, some strong teams (e.g., the defending champion
Houston Rockets) were not included in the list. Mono-

10 Eight teams qualified for the playoffs from each conference.
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Table 2 Median Judged Probability and Certainty Equivalent for the
Two Conferences and Respective Leading Teams for the 1996
NBA Playoffs
Certainty
Judged Probability Equivalents
Eastern Conference 0.78 $50
Chi v Orl v Ind v NY 0.90 $60
Western Conference 0.18 $15
Seattle v Utah v SA v LA 0.20 $15

tonicity requires, therefore, that the judged probability
and certainty equivalent assigned to each conference
should exceed those assigned to their leading teams.
The unpacking principle, on the other hand, suggests
that a nontransparent comparison (e.g., a between-
subjects test) may produce violations of monotonicity.
Indeed, the data of Table 2 do not satisfy the monoto-
nicity requirement. There is essentially no difference in
either judged probability or the certainty equivalent be-
tween the Western conference and its four leading
teams, whereas the judged probability and the certainty
equivalent assigned to the Eastern conference are sig-
nificantly smaller than those assigned to its four leading
teams (p < 0.05, by a t-test in each case)."!

Violations of monotonicity (or dominance) induced
by unpacking have been observed by several investi-
gators. Johnson et al. (1993), for example, reported that
subjects were willing to pay more for a health insurance
policy that covers hospitalization for all diseases and
accidents than for a policy that covers hospitalization
for any reason. Wu and Gonzalez (1998b) found similar
effects in the evaluation of prospects contingent on di-
verse events such as the winner of the World Series, the
outcomes of the 1996 elections, and future temperature
in Boston. Although the effects observed in the above
studies are not very pronounced, they indicate that un-
packing can give rise to nonmonotonicity in judgments

" Violations of monotonicity are also evident in the certainty equiva-
lent data for Study 1 reported in Figure 3. Note that the median cer-
tainty equivalent for San Antonio is higher than the median certainty
equivalent for the Midwestern Division; Chicago and Orlando are
priced as high as their respective divisions. While these results are
consistent with the present account, none of these differences is statis-
tically significant.
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of probability as well as the pricing of uncertain pros-
pects.

Study 2: Economic Indicators

The above study, like previous tests of bounded subad-
ditivity, relied on subjects’ beliefs regarding the occur-
rence of various real-world events. In the following
study, subjects were given an opportunity to learn the
probability of target events by observing changes in in-
flation and interest rates in a simulated economy. This
design allows us to test both the classical theory and the
two-stage model in a controlled environment in which
all subjects are exposed to identical information. It also
allows us to compare subjects’ judged probabilities to
the actual probabilities of the target events.

Method

Participants. Subjects were students (N = 92) en-
rolled in an introductory class in judgment and decision
making at Stanford University. Students were asked to
download a computer program from a world wide web
page, run the program, and e-mail their output to a class
account. At the time of the study, the students had been
exposed to discussions of probability theory and judg-
mental biases, but they were unfamiliar with decision
theory. We received 86 complete responses. Four sub-
jects were dropped because they apparently did not un-
derstand the instructions. The 82 remaining subjects in-
cluded 49 men and 33 women (median age = 21.5).
Most of them completed the study in less than an hour
(median = 47 minutes).

Procedure. Subjects were first given an opportunity
to learn the movement of two indicators (inflation and
interest rates) in a simulated economy. Each indicator
could move either up or down relative to the previous
quarter. In this economy both indicators went up 60 per-
cent of the time, inflation went up and interest went
down 25 percent of the time, inflation went down and
interest went up 10 percent of the time, and both indi-
cators went down 5 percent of the time. The order of
these events was randomized over 60 quarters of learn-
ing, separately for each subject. Participants were in-
formed that the probabilities of the target events were
the same for each quarter.

The learning procedure was divided into two parts.
During the first 20 quarters, subjects merely clicked the
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mouse to advance to the next quarter and observed
what happened. During the remaining 40 quarters, sub-
jects also played a game in which they predicted the
direction that each indicator would move in the subse-
quent quarter, and they made (hypothetical) bets on
their predictions. After each prediction, subjects were
given feedback and the computer adjusted their “bank
balance” according to whether they had predicted cor-
rectly.

The second task was designed to estimate C for risky
prospects. We constructed eleven prospects of the form
($1600, p) that offered to pay $1600 with probability
(0.01, 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 0.85, 0.90, 0.95,
0.99). The elicitation procedure was identical to that
used in the basketball study, except that all dollar
amounts were multiplied by 10. Using this method we
could estimate C for $1600 prospects within + $10.

The third task was designed to estimate C for uncer-
tain prospects. Subjects were first given an opportunity
to review up to three times a 35-second ““film”” that very
briefly displayed changes in the two indicators over
each of the 60 quarters that subjects had previously ob-
served. They were then presented with prospects that
offered $1600 contingent on the movement of the indi-
cators in the next (i.e., 61st) quarter. The first four trials
involved movement of a single indicator (e.g., win
$1600 if inflation up). The next four trials involved
movement of both indicators (e.g., win $1600 if inflation
up and interest down). The final four trials involved
negations of the previous four events (e.g., win $1600
unless inflation up and interest down). The order of
prospects within each set of trials was randomized sep-
arately for each subject. C was elicited through a series
of choices between uncertain prospects and sure pay-
ments, as in the previous task.

The fourth task was designed to obtain an indepen-
dent test of risk aversion. The procedure was essentially
identical to the third task of the basketball study, except
that the dollar amounts were multiplied by 10, and the
initial value of x for the variable prospect was set so that
the expected value of the two spinner games was equal
(see Table 7).

In the fifth task, subjects judged the probability of
each target event. Subjects were first given an oppor-
tunity to review again up to three times a “film” of the
60 quarters they had previously observed. The first
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eight trials involved the movement of a single economic
indicator (e.g., what is the probability that the following
happens: inflation up) or combination of indicators
(e.g., inflation up and interest down). The last four trials
involved complementary events (e.g., what is the prob-
ability that the following does not happen: inflation up
and interest down). The order of these events within
each set was randomized separately for each subject,
and responses were elicited as in the basketball study.

Subjects performed one additional task involving the
acceptability of mixed prospects. The results of this task
will not be discussed here.

Results

Judged Probabilities. Figure 5 plots for each target
event the median judged probability against the actual
probability. The figure shows that participants had
learned the probabilities of the target events with im-
pressive accuracy (r = 0.995). The mean absolute dif-
ference (MAD) between median judged probability and
actual probability was 0.048. The median correlation for
individual subjects was 0.89 (median MAD = 0.14).
Subjects also exhibited a tendency to overestimate low
probabilities and underestimate high probabilities. Of
the 82 subjects, 60 both overestimated, on average,
events with true probabilities less than 50 percent, and

Figure 5 Median Judged Probability as a Function of Actual Probabil-
ities for All Target Events in Study 2
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underestimated, on average, events with true probabil-
ities greater than 50 percent (p < 0.001 by sign test).
The median judged probability for each target event
is listed in Table 3. Each cell displays the probability
that the two indicators move as specified. The median
judged probabilities of the complementary events are
given in brackets. For example, the median judged
probability that both indicators go up is 0.60, the prob-
ability that it is not the case that both indicators go down
is 0.85, and the probability that inflation goes up is 0.75.
Recall that support theory predicts that the judged
probability of an event and its complement will sum to
unity (binary complementarity), but in all other cases
the sum of the judged probabilities of disjoint events

Table 3 Median Judged Probability of All Target
Events in Study 2 (Data for Complementary
Events are Given in Brackets)

Interest
Up Down
0.60 0.25
Up [0.40] [0.71] 0.75
Inflation Down 0.15 0.10 0.25
[0.79] [0.85]
0.68 0.30
Table 4a Tests of Binary
Complementarity for Median
Judged Probabilities
in Study 2
Partition >P; A=32P -1
Ue, De 1.00 0.00
o, oD 0.98 —0.02
vy, To 1.00 0.00
uDp, UD 0.96 —0.04
DU, DU 0.94 —0.06
DD, DD 0.95 —0.05
Mean 0.97 —0.03

The first column presents binary partitions
of S, the second column (ZP) presents the
sum of median judged probabilities for this
partition, and the third column (A) presents
the difference between this sum and one.
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will be greater than or equal to the judged probability
of their union (subadditivity). Table 4a presents six tests
of binary complementarity, based on the median re-
sponse to each item. Each row presents a binary parti-
tion of the sample space, along with the sum of median
judged probabilities for this partition. The column la-
beled A lists the difference between this sum and one.
For each event, the first letter corresponds to inflation
(U for up, D for down) and the second to interest. For
example, UD is the event “inflation up and interest
down,” Us is the event “inflation up,” and D is the
event “interest down.” Complements are denoted by a
bar. For example, UU is the event “it is not the case that
interest up and inflation up.” As expected, the sum of
median judged probabilities for complementary events
is close to unity (mean = 0.97). However, these values
were systematically smaller than one: the median value
of the mean of these tests for each subject is 0.98; 48
subjects exhibited a mean less than 1.00, 10 exhibited a
mean equal to 1.00, and 24 exhibited a mean greater
than 1.00 (p < 0.01).

Table 4b presents eight tests of subadditivity based
on median judged probabilities. Each row presents the
sum of judged probabilities of disjoint events, the
judged probability of their union, and the difference be-
“tween them (A). For example, the first row shows that
P(inflation Up and interest Up) + P(inflation Up and inter-

Table 4b Tests of Subadditivity for Median Judged Probabilities
in Study 2

Event Partition SP; P A=3P—-P
Us uu, Uub 0.85 0.75 0.10
De DU, DD 0.25 0.25 0.00
U uu, pu 0.75 0.68 0.07
D uD, DD 0.35 0.30 0.05
o uD, DU, DD 0.50 0.40 0.10
UD uu, bu, bb 0.85 0.71 0.14
DU uu, UDb, DD 0.95 0.79 0.16
DD uu, up, bu 1.00 0.85 0.15
Mean 0.69 0.59 0.10

The first column presents a target event, the second column presents a
partition of that event, the third column (£P) presents the sum of median
judged probabilities over the partition, the fourth column (P) presents the
median judged probability of the target event, and the fifth column (A) pre-
sents the difference between these two values.
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est Down) = 0.85, and P(inflation Up) = 0.75, so that A
= 0.10. As expected, Table 4b shows that in every case
the sum of judged probabilities of disjoint events is
greater than or equal to the judged probability of their
union,’? and the mean difference between them is 0.10.
Furthermore, 60 of 82 subjects exhibited this pattern
(i.e, mean A > 0) on average (p < 0.001 by sign test).

Certainty Equivalents. The median normalized C,
for each target event A is presented in Table 5. The cor-
responding medians for the complementary events are
given in brackets. For example, the median normalized
C for the event that both indicators go up is 0.43 and
the median for the complementary event is 0.29. It can
be shown that whenever w(p) + w(1 — p) = 1 and the
value function is concave, the two-stage model implies
the partition inequality for binary partitions of the sam-
ple space® (ie., C(x, A) + C(x, S — A) = C(x, S) = x),
but it does not imply the partition inequality for finer
partitions of S or for binary partitions of other events.

Table 6a presents six tests of the partition inequality
for binary partitions of the sample space. Analogous to
Table 4a, each row presents a binary partition of S along
with the sum of median normalized Cs for this partition
and the difference (A) between this sum and one. As
predicted by both the classical theory and the present
account, the partition inequality holds for all compari-
sons listed in Table 6a (mean A = —0.24). It also holds
on average for 68 of 82 subjects (p < 0.001).

Table 6b presents eight additional tests of the parti-
tion inequality based on proper subsets of S. Analogous
to Table 4b, each entry presents the sum of median nor-
malized Cs of disjoint events, the normalized C of their
union, and the difference between them. Table 6b shows
that the partition inequality fails in all cases (mean A
= 0.09)." Furthermore, 51 of 82 subjects exhibited this
pattern on average (i.e., A > 0, p < 0.05 by sign test).

12In every case A > 0 for a significant majority of subjects (p < 0.05).
13 The condition w(p) + w(1 — p) = 1, called subcertainty, is generally
supported by empirical data (see e.g., Tversky and Kahneman 1992).
It says that the certainty effect is more pronounced than the possibility
effect, and it implies the common finding that w(0.5) < 0.5 (see Figure
1).

“In every case A > 0 for a majority of subjects; this majority is statis-
tically significant (p < 0.05 by sign test) for all tests but the first and
fourth listed in the table.
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Table 5 Median Normalized Certainty Equivalents of
All Target Events in Study 2 (Data for
Complementary Events are Given in Brackets)

Interest
Up Down
0.43 0.22
Up [0.29] [0.48] 0.62
Inflation Down 0.13 0.10 0.18
[0.59] [0.76]
0.49 0.28

The preceding results can be summarized as follows.
For binary partitions of the sample space S, judged
probabilities (nearly) satisfy binary complementarity
(Table 4a), and certainty equivalents satisfy the parti-
tion inequality (Table 6a). This pattern is consistent
with both the classical theory and the present account.
For finer partitions, however, the data yield subadditiv-
ity for judged probabilities (Table 4b) and reversal of
the partition inequality for certainty equivalents (Table
6b). This pattern is consistent with the two-stage model
but not with the classical theory.

Comparing Models. We next compare the fit of the
classical theory to that of the two-stage model using the

Table 6a Tests of the Partition
Inequality for Binary Partitions
of Sin Study 2
Partition =G A=3C-1
Us, De 0.79 -0.21
o, oD 0.78 -0.22
uu, U 0.73 -0.27
up, UD 0.70 —-0.30
DU, DU 0.72 -0.28
DD, DD 0.86 —0.14
Mean 0.76 —0.24

The first column presents a partition of S,
the second column (=C)) presents the sum of
median normalized certainty equivalents for
this partition, and the third column (A) pre-
sents the difference between this sum and
one.
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Table 6b Tests of the Partition Inequality in Study 2 for Proper
Subsets of S

Event Partition =G c A=3C-C
Ue uu, Ub 0.65 0.62 0.03
De DU, DD 0.23 0.18 0.05
) uu, bU 0.56 0.49 0.07
D ub, DD 0.32 0.28 0.04
o ub, bU, DD 0.45 0.29 0.16
D uu, bu, bb 0.66 0.48 0.18
DU Uu, Ub, DD 0.75 0.59 0.16
DD uu, Ub, bU 0.78 0.76 0.02
Mean 0.55 0.46 0.09

The first column presents a target event, the second column presents a
partition of that event, the third column (£C) presents the sum of median
normalized certainty equivalents over the partition, the fourth column (C)
presents the median normalized certainty equivalent of the target event, and
the fifth column (A) presents the difference between these two values.

same method as in the previous study. To fit the clas-
sical theory, the exponent a of the utility function was
estimated from the spinner games and the exponent for
each subject was estimated using the median value of «
derived from that subject’s responses to the eight prob-
lems listed in Table 7. Subjects were generally risk-
averse: 48 subjects exhibited o < 1.00 (risk aversion); 32
exhibited @ = 1.00 (risk neutrality); and 2 exhibited «
> 1.00 (risk seeking) (p < 0.001). Applying the same
analysis to the median response to each of the eight tri-
als yields o = 0.80.

Table 7 Values of a, b, and c Used in Spinner Games of Study 2, and

Median Value of Subjects’ Responses (x)

Fixed Prospect Variable Prospect

Probability 0.25 0.25 0.50 0.25 0.25 0.50

Outcome $a $b $0 $c $x $0
(median)
1) 500 1000 250 1330
2) 500 700 250 990
3) 200 1200 400 985
4) 200 800 400 600
5) 650 550 800 400
6) 650 350 800 210
7) 1100 100 750 360
8) 1100 250 750 520

MANAGEMENT SCIENCE/ Vol. 44, No. 7, July 1998



FOX AND TVERSKY
Belief-Based Account of Decision Under Uncertainty

According to the classical theory with a power utility
function, C§ = 1600°P(A). Recall that in this study sub-
jects learned probabilities by observing the frequencies
of the four elementary events (e.g., inflation up and in-
terest up). For each elementary target event A, we com-
puted (C4/1600)%, and divided these values by their
sum to ensure additivity. The subjective probabilities of
all other events were derived from these estimates, as-
suming additivity.

The two-stage model was estimated using Equation
(5) as in the previous study. The data show that this
model fits the median certainty equivalents (mean ab-
solute error = $69) better than the classical theory
(mean absolute error = $128)."® The same holds within
the data of individual subjects. Using individual esti-
mates of the parameters, the two-stage model fits the
data better than the standard theory for 50 of the 82
participants (p < 0.05).

4. Discussion

The two preceding studies indicate that to a reasonable
first approximation, the certainty equivalents of uncer-
tain prospects can be predicted from independent judg-
ments of probability and certainty equivalents for risky
prospects, without estimating any parameters from the
fitted data. Moreover, this model can account for the
observed violations of the partition inequality. We con-
clude this article with a review of related studies, a com-
ment regarding response bias, a discussion of the prob-
lem of source preference, and some closing thoughts
concerning practical implications of the two-stage
model.

Previous Studies

In the basketball study reported above, the event space
has a hierarchical structure (conferences, divisions,
teams). In the economic indicators study, the event
space has a product structure (inflation up /down X in-
terest up/down). Previous tests of bounded subaddi-
tivity employed a dimensional structure in which a nu-
merical variable (e.g., the closing price per share of Mi-

15 A least-square procedure for estimating all subjective probabilities
simultaneously subject to the additivity constraint did not improve
the fit of the classical theory.
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crosoft stock two weeks in the future) was partitioned
into intervals (e.g., less than $88, $88 to $94, more than
$94). Subjects priced prospects contingent on these
events and assessed their probabilities.

The results of these studies, summarized in Table 8,
are consistent with the present account. First, consider
probability judgments. The column labeled (4, S — A)
presents the median sum of judged probabilities for bi-
nary partitions of S, and the column labeled (4, ...,
A,) presents the median sum of judged probabilities for
finer partitions of S. The results conform to support the-
ory: sums for binary partitions of S are close to one,
whereas sums for n-fold partitions are consistently
greater than one. Next, consider certainty equivalents.
The column labeled XC presents the median sum of nor-
malized certainty equivalents for the finest partition of
S in each study, and the column labeled %V presents
the corresponding percentage of subjects who violated
the partition inequality. In accord with the present find-
ings, the majority of subjects in every study violated the
partition inequality, and the sum of certainty equiva-
lents was often substantially greater than the prize. This
pattern holds for a wide range of sources, with and
without monetary incentives, and for both naive and
expert subjects. Taken together, these findings suggest
that subadditivity of judged probability is a major cause
of violations of the partition inequality.

The studies of Fox et al. (1996) are particularly inter-
esting in this respect. Participants were professional op-
tions traders who priced prospects contingent on the
closing price of various stocks. Unlike typical subjects,
the options traders priced risky prospects by their ex-
pected value, yielding v(x) = x and w(p) = p. Like most
other subjects, however, their judged probabilities were
subadditive (i.e., P(A;) + - -+ + P(A,) > P(A)). Under
these circumstances, the two-stage model predicts

Clx, Ar) + -+ + C(x, An)
=P(A)x + --- + P(A)x > P(A)x = C(x, A),

whereas the classical theory requires equality through-
out. The data for the options traders, summarized in
Table 8, confirms the prediction of the two-stage model.

Response Bias
We have attributed the subadditivity of judged proba-
bilities and of decision weights to basic psychological
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Table 8 Summary of Previous Studies
Certainty
Judged Probabilities Equivalents
Study/Population N* Sources of Uncertainty (A, S-A) (A, ..., A) >C %V
a. NBA Fans 27 Playoff Game 0.99 1.40 1.40 93
SF Temperature 0.98 1.47 1.27 77
b. NFL Fans 40 Super Bowl 1.01 1.48 1.31 78
Dow Jones 0.99 1.25 1.16 65
¢. Stanford Students 45 SF Temperature 1.03 216 1.98 88
Beijing Temperature 1.01 1.88 1.75 82
d. Options Traders (San Francisco) 32 Microsoft 1.00 1.40 1.53 89
General Electric 0.96 1.43 1.50 89
e. Options Traders (Chicago) 28 IBM 1.00 1.27 1.47 82
Gannett Co. 0.99 1.20 1.13 64
Median 1.00 1.42 1.44 82

The first three columns identify the subject population, sample sizes, and sources of uncertainty. Studies a, b, and ¢ are reported in
Tversky and Fox (1995) and are based on a sixfold partition. Studies d, and e are reported in Fox et al. (1996), and are based on a
fourfold partition. The next two columns present the median sum of judged probabilities for a binary partition (A, S—A) and for n-fold

partitions (A, ..

., A;) of S. The next column, labeled =C, presents the median sum of normalized certainty equivalents over an n-fold

partition of S. The final column, labelled %V, presents the percentage of subjects who violated the partition inequality. A few table entries

are based on smaller samples than indicated because of missing data.

principles advanced in support theory and prospect the-
ory. Alternatively, one might be tempted to account for
these findings by a bias toward the midpoint of the re-
sponse scale. This bias could be induced by anchoring
on the midpoint of the scale, or by a symmetric error
component that is bounded by the endpoints of the re-
sponse scale. Although such response bias may contrib-
ute to subadditivity in some studies, it cannot provide
a satisfactory account of this phenomenon. First, there
is compelling evidence for bounded subadditivity in
simple choices between uncertain prospects (see e.g.,
Tversky and Kahneman 1992, tables 1 and 2; Wu and
Gonzalez 1996) that cannot be explained as a response
bias.'® Second, response bias cannot account for the ob-
servation that unpacking the description of a target
event can increase the attractiveness of the correspond-
ing prospect, nor can it account for the resulting non-
monotonicities described above. Third, a symmetric

16 The studies of Wu and Gonzalez (1996) provide evidence of con-
cavity for low probabilities and convexity for moderate to high prob-
abilities, which are stronger than lower and upper subadditivity, re-
spectively.
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bias toward the midpoint of the response scale cannot
explain the observation that both cash equivalents and
decision weights for complementary prospects gener-
ally sum to less than one. Finally, it should be noted
that the significance of subadditivity to the prediction
of judgment and choice is not affected by whether it is
interpreted as a feature of the evaluation process, as a
response bias, or as a combination of the two.

Source Preference

There is evidence that people’s willingness to bet on an
uncertain event depends not only on the degree of un-
certainty but also on its source. We next review this phe-
nomenon and discuss its relation to the belief-based ac-
count.

A person exhibits source preference if he or she pre-
fers to bet on a proposition drawn from one source
rather than on a proposition drawn from another
source, and also prefers to bet against the first propo-
sition rather than against the second. Source preference
was first illustrated by Ellsberg (1961) using the follow-
ing example. Consider an urn containing 50 red and 50
black balls, and a second urn containing 100 red and
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black balls in an unknown proportion. Suppose you are
offered a cash prize if you correctly guess the color of a
ball drawn blindly from one of the urns. Ellsberg argued
that most people would rather bet on a red ball from
the first urn than on a red ball from the second, and
they also would rather bet on a black ball from the first
urn than on a black ball from the second. This pattern
has been observed in several studies (see Camerer and
Weber 1992 for a review ). The preference to bet on clear
or known probabilities rather than vague or unknown
probabilities has been called ambiguity aversion.

More recent research has shown that although people
exhibit ambiguity aversion in situations of complete ig-
norance (e.g., Ellsberg’s urn), they often prefer betting
on their vague beliefs than on matched chance events.
Indeed, the evidence is consistent with a more general
account, called the competence hypothesis: people prefer
to bet on their vague beliefs in situations in which they
feel particularly competent or knowledgeable, and they
prefer to bet on chance when they do not (Heath and
Tversky 1991). For example, subjects who were knowl-
edgeable about football but not about politics preferred
to bet on the outcome of professional football games
than on matched chance events, but they preferred to
bet on chance than on the results of a national election.
Analogously, subjects who were knowledgeable about
politics but not about football preferred to bet on the
results of an election than on matched chance events,
but they preferred to bet on chance than on football."”

The present studies provide some evidence for source
preference that is consistent with the competence hy-
pothesis. Recall that subjects in Study 1 were recruited
for their interest in professional basketball. Indeed,
these subjects preferred betting on basketball to betting
on matched chance events: the median certainty equiv-
alent for the Eastern Conference ($79) and the Western
Conference ($74) were both greater than the median cer-
tainty equivalent for the 50-percent chance prospect
($69). In contrast, subjects in Study 2 did not have spe-
cial expertise regarding the simulated economy. Indeed,

7 To complicate matters further, Fox and Tversky (1995) have shown
that ambiguity aversion, which has been commonly observed when
people evaluate both clear and vague propositions jointly, seems to
diminish or disappear when people evaluate only one of these prop-
ositions in isolation.
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these subjects generally preferred betting on chance to
betting on the economic indicators. For example, the
median certainty equivalent for both inflation and in-
terest going up ($690) was the same as the median cer-
tainty equivalent for the 50-percent chance prospect, but
the median certainty equivalent for the complementary
event ($470) was considerably lower.

It is evident that source preference cannot be ex-
plained by the present model, though it can be accom-
modated by a more general belief-based account. For
example, we can generalize equation (1) by letting
W(A) = F[P(A)] so that the transformation F of judged
probability depends on the source of uncertainty. One
convenient parameterization may be defined by W(A)
= (w[P(A)])?, where 6 > 0 is inversely related to the
attractiveness of the source.'® These generalizations no
longer satisfy Equation (5), but they maintain the de-
composition of W into two components: P, which re-
flects a person’s belief in the likelihood of the target
event; and F (or w’), which reflects a person’s preference
to bet on that belief.

Practical Implications
The two-stage model may have important implications
for the management sciences and related fields. First,
the unpacking principle implies that the particular de-
scriptions of events on which outcomes depend may
affect a person’s willingness to act. Hence, the attrac-
tiveness of an opportunity such an investment might be
increased by unpacking the ways in which the invest-
ment could be profitable; willingness to take protective
action such as the purchase of insurance might be in-
creased by unpacking the ways in which a relevant mis-
hap might occur.

Second, violations of the partition inequality sug-
gest that people are willing to pay more for a prospect
when components are evaluated separately; thus,

18 Alternatively, one might accommodate source preference by varying
a parameter of the risky weighting function that increases or decreases
weights throughout the unit interval. For example, one can vary 3 of
Prelec’s (1998) two-parameter risky weighting function, w(p)
= exp(—B(—In p)*), where 8 > 0 is inversely related to the attractive-
ness of the source. This has the advantage of manipulating the “ele-
vation” of the function somewhat independently of its degree of “’cur-
vature.” For more on elevation and curvature of the weighting func-
tion, see Gonzalez and Wu (1998).
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they are willing to pay a premium, on average, for
specificity. When such decisions are aggregated over
time or across individuals within an organization,
this pattern can lead to certain losses. To illustrate,
the first author ran a classroom exercise in which
MBA students were divided into six ““firms” of eight
students each, and each student was asked to decide
their firm’s maximum willingness to pay for an “in-
vestment” that would yield $100,000 depending on
future movement of indicators in the U.S. economy.
The state space was partitioned into eight events (one
for each student) so that each firm’s portfolio of in-
vestments resulted in a certain return of exactly
$100,000. Nevertheless, the six firms reported
willingness-to-pay for the eight investments that
summed to between $107,000 and $210,000.

5. Concluding Remarks

We have provided evidence that decision weights
under uncertainty can be predicted from judged
probabilities of events and risky decision weights.
To the extent that the two-stage model reflects the
psychological process underlying decision under
uncertainty, this model suggests two independent
sources of departure from the classical theory: a
belief-based source (subadditivity of judged proba-
bility) and a preference-based source (nonlinear
weighting of chance events). While the development
of effective prescriptions for correcting such bias
awaits future investigation, this decomposition of
the weighting function offers a new approach to the
modeling of decision under uncertainty that inte-
grates probability judgment into the analysis of
choice."”

19 This research was conducted while the first author was visiting at
Northwestern University. It was supported in part by grant SBR-
9408684 from the National Science Foundation to the second author.
The authors thank George Wu and Peter Wakker for helpful discus-
sions and suggestions.
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