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INTRODUCTION TO PROSPECT THEORY

Whether we like it or not we face risk every day of
our lives. From selecting a route home from work to
selecting a mate, we rarely know in advance and with
certainty what the outcome of our decisions will be.
Thus, we are forced to make tradeoffs between the
attractiveness (or unattractiveness) of potential outcomes
and their likelihood of occurrence.

The lay conception of risk is associated with hazards
that fill one with dread or are poorly understood
(Slovic, 1987). Business managers, for example, tend to
see risk not as a gamble but as a “challenge to be over-
come” and see risk as increasing with the magnitude
of potential losses (e.g., March and Shapira, 1987).
Likewise, medical clinicians tend to see risk as expo-
sure to loss or harm to oneself or others (Furby and
Beyth-Marom, 1992). Decision theorists, in contrast,
view risk as increasing with variance in the probability
distribution of possible outcomes, regardless of
whether a potential loss is involved. For example,
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a prospect that offers a 50—50 chance of paying $100
or nothing is more risky than a prospect that offers $50
for sure—even though the risky prospect entails no
possibility of losing money. This core idea serves as
the focus of discussion in Chapter 9, which discusses
the many approaches to risk in the study of human
and animal preferences.

Since the work of the American economist Frank
Knight (1921), however, economists have distinguished
decisions under risk from decisions under uncertainty. In
decisions under risk, the decision maker knows with
precision the probability distribution of possible out-
comes, as when betting on the flip of a coin or entering
a lottery with a known number of tickets. In decisions
under uncertainty the decision maker is not provided
such information but must assess the probabilities of
potential outcomes with some degree of vagueness, as
when betting on a victory by the home team or invest-
ing in the stock market. This distinction between risk
and uncertainty is also developed at greater length in
Chapter 9.

*We thank Mohammed Abdellaoui, Han Bleichrodt, Paul Glimcher, and Peter Wakker for useful feedback on earlier versions of this
chapter and Carsten Erner for extensive assistance preparing the updated version.
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In this chapter, we explore behavioral and neuro-
economic perspectives on decisions under risk in one
specific intellectual tradition that has emerged over
the last few decades at the border between economics
and psychology. For simplicity, we will confine most
of our attention to how people evaluate simple pro-
spects with a single nonzero outcome that occurs with
known probability (e.g., a 50—50 chance of winning
$100 or nothing) though we will also mention exten-
sions to multiple outcomes and to vague or unknown
probabilities.

In the remainder of this section we provide a brief
overview of economic models of decision making
under risk (for a fuller treatment, see Chapters 1, 3,
and 9), culminating in prospect theory (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992), the most
influential descriptive account that has emerged to
date (see also Wakker, 2010). In subsequent sections,
we provide an overview of various parameterizations
of prospect theory’s functions, and review methods for
eliciting them. We next take stock of neuroeconomic
studies of prospect theory, and then provide some sug-
gested directions for future research.

Historical Context

The origin of decision theory is traditionally traced
to a correspondence between Pascal and Fermat in
1654 that laid the mathematical foundation of probabil-
ity theory. Theorists asserted that decision makers
ought to choose the option that offers the highest
expected value (EV). Consider a prospect (x, p) that
offers $x with probability p (and nothing otherwise):

EV = px. (A.1)

A decision maker is said to be risk neutral if he is
indifferent between a gamble and its expected value;
he is said to be risk averse if he prefers a sure payment
to a risky prospect of equal or higher expected value;
he is said to be risk seeking if he prefers a risky pros-
pect to a sure payment of equal or higher expected
value. Thus, expected value maximization assumes a
neutral attitude toward risk. For instance, a decision
maker who employs this rule will prefer receiving
$100 if a fair coin lands heads (and nothing otherwise)
to a sure payment of $49, because the expected value
of the gamble ($50 = .5 X $100) is higher than the value
of the sure thing ($49).

Expected value maximization 1is problematic
because it does not allow decision makers to exhibit
risk aversion — it cannot explain, for example, why a
person would prefer a sure $49 over a 50—50 chance
of receiving $100 or nothing, or why anyone would
purchase insurance. Swiss mathematician Daniel
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Bernoulli (1738) advanced a solution to this problem
when he asserted that people do not evaluate options
by their objective value but rather by their utility or
“moral value.” Bernoulli observed that a particular
amount of money (say, $1000) is valued more when
a person is poor (wealth level W;) than when he is
wealthy (W), and therefore marginal utility of gaining
$1000 decreases (from U; to U,) as wealth increases
(see Figure A.1A). This gives rise to a utility function
that is concave over states of wealth. In Bernoulli’s
model, decision makers choose the option with highest
expected utility (EU):

EU = pu(x) (A2)

where u(x) represents the utility of obtaining outcome
x. For example, a concave utility function (u"(x) <0)
implies that the utility gained by receiving $50 is more
than half the utility gained by receiving $100, and
therefore a decision maker with such a utility function
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FIGURE A.1 (A) A representative utility function over states of
wealth illustrating the notion of diminishing marginal utility. (B) A
representative utility function over states of wealth illustrating risk
aversion for gains at an initial state of wealth W,
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should prefer $50 for sure to a .5 probability of receiv-
ing $100 (see Figure A.1B).

Axiomatization of Expected Utility

Expected utility became a central component of eco-
nomic theory when von Neumann and Morgenstern
(1947) articulated a set of axioms that are both neces-
sary and sufficient for representing a decision maker’s
choices by the maximization of expected utility (see
also Jensen, 1967).

One of the central axioms of expected utility theory
is the substitution axiom (a.k.a. “independence”): if a
person prefers lottery L, to lottery L, then this prefer-
ence should be not affected by a mixture of both
lotteries with a common third lottery L;. Formally,
if = is a binary preference relation over lotteries,
for any a€(0, 1), Ly =L, if and only if al; + (1 — o)L3=
aly + (1 — o)Ls.

A more general formulation of expected utility the-
ory that extended the model from risk to uncertainty
(Savage, 1954) relies on a related axiom known as the
sure-thing principle: if two options yield the same conse-
quence when a particular event occurs, then a person’s
preferences among those options should not depend
on the particular consequence (i.e., the “sure thing”) or
the particular event that they have in common.
To illustrate, consider a game show in which a coin is
flipped to determine where a person will be sent on
vacation. Suppose the contestant would rather go to
Atlanta if the coin lands heads and Chicago if it lands
tails (@, H; ¢, T) than go to Boston if the coin lands
heads and Chicago if it lands tails (b, H; ¢, T). If this is
the case, he should also prefer to go to Atlanta if the
coin lands heads and Detroit (or any other city for that
matter) if the coin lands tails (@, H; d, T) to Boston if
it lands heads and Detroit if it lands tails (b, H; d, T).

Violations of Substitution and the Sure
Thing Principle

It was not long before the descriptive validity of
expected utility theory and its axioms were called into
question. One of the most powerful challenges has
come to be known as the Allais paradox (Allais, 1953;
Allais and Hagen, 1979). The following version was
presented by Kahneman and Tversky (1979)."

Decision 1: Choose between (A) an 80% chance of
$4000; (B) $3000 for sure.

Decision 2: Choose between (C) a 20% chance of
$4000; (D) a 25% chance of $3000.

Most respondents chose (B) over (A) in the first
decision and (C) over (D) in the second decision,
which violates the substitution axiom. To see why,
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TABLE A.1 The Allais Common Consequence Effect
Represented Using a Lottery with Numbered Tickets.

Ticket numbers

Option 1-33 34 35—-100
E 2500 0 2400
F 2400 2400 2400
G 2500 0 0
H 2400 2400 0

note that C="/1A and D ='/iB so that according to the
substitution axiom a decision maker should prefer C to
D if and only if he prefers A to B. This systematic vio-
lation of substitution is known as the common ratio
effect.

A related demonstration from Allais was adapted
by Kahneman and Tversky (1979) as follows:

Decision 3: Choose between (E) a 33% chance of
$2500; a 66% chance of $2400 and a 1% chance of
nothing; (F) $2400 for sure.

Decision 4: Choose between (G) a 33% chance of
$2500; (H) a 34% chance of $2400.

In this case most people prefer option (F) to option
(E) in Decision 3, but they prefer option (G) to option
(H) in Decision 4, which violates the sure-thing princi-
ple. To see why, consider options (E) through (H) as
being payment schemes attached to different lottery
tickets that are numbered consecutively from 1 to 100
(see Table A.1). Note that one can transform options
(E) and (F) into options (G) and (H), respectively,
merely by replacing the common consequence (receive
$2400 if the ticket drawn is 35—100) with a new com-
mon consequence (receive $0 if the ticket drawn is
35—100). Thus, according to the sure-thing principle, a
person should favor option (G) over option (H) if and
only if he prefers option (E) to option (F), and the domi-
nant pattern of preferences violates this axiom. This vio-
lation of the sure-thing principle is known as the
common consequence effect.

Both the common ratio effect and common conse-
quence effect resonate with the notion that people
are more sensitive to differences in probability near
impossibility and certainty than in the intermediate
range of the probability scale. Thus, people typically
explain their choice in Decision (1) as a preference for
certainty over a slightly smaller prize that entails a
possibility of receiving nothing; meanwhile, they
explain their choice in Decision (2) as a preference for
a higher possible prize given that the difference
between a probability of .20 and .25 is not very large.

'Kahneman and Tversky’s version was originally denominated in Israeli Pounds.
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Likewise, people explain their choice in Decision (3) as
a preference for certainty over a possibility of receiving
nothing; meanwhile, they explain their choice in
Decision (2) as a preference for a higher possible prize
given that the difference between a probability of .33
and .34 seems trivial.

The Fourfold Pattern of Risk Attitudes

The Allais paradox is arguably the starkest and
most celebrated violation of expected utility theory to
date. In the years since it was articulated, numerous
studies of decision under risk have shown that people
often violate the principle of risk aversion that under-
lies much economic analysis. Table A.2A illustrates a
common pattern of risk aversion and risk seeking
exhibited by participants in studies of Tversky and
Kahneman (1992). Let c(x, p) be the certainty equivalent
of the prospect (x, p) that offers to pay $x with proba-
bility p (i.e., the sure payment that is deemed equally
attractive to the risky prospect). The upper left-hand
entry in Table A.2A shows that the median participant
was indifferent between receiving $14 for sure and a
5% chance of gaining $100. Because the expected value
of the prospect is only $5, this observation reflects risk
seeking behavior.

Table A2A reveals a four-fold pattern of risk atti-
tudes: risk seeking for low-probability gains and high-
probability losses, coupled with risk aversion for
high-probability gains and low-probability losses. Choices
consistent with this fourfold pattern have been observed
in several studies (Fishburn and Kochenberger, 1979;
Kahneman and Tversky, 1979; Hershey and Schoemaker,
1980; Payne et al., 1981). Risk seeking for low-probability
gains may contribute to the attraction of gambling,
whereas risk aversion for low-probability losses may con-
tribute to the attraction of insurance. Risk aversion for
high-probability gains may contribute to the preference
for certainty, as in the Allais (1953) paradox, whereas risk
seeking for high-probability losses is consistent with the
common tendency to undertake risk to avoid facing a
sure loss.

TABLE A.2A The Fourfold Pattern of Risk Attitudes

Gains Losses

Low probability c($100, .05) = $14 c(—$100, .05) = —$8
Risk seeking Risk aversion

High probability c($100, .95) = $78 c(—$100, .95) = —$84

Risk aversion Risk seeking

c(x, p) is the median certainty equivalent of the prospect that pays $x with
probability p.
Table A.2A adapted from Toversky and Kahneman (1992).
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Prospect Theory

The Allais paradox and the four-fold pattern of risk
attitudes are accommodated neatly by prospect theory
(Kahneman and Tversky, 1979; Tversky and Kahneman,
1992), the leading behavioral model of decision making
under risk, and the major work for which Daniel
Kahneman was awarded the 2002 Nobel Prize in eco-
nomics (his colleague Amos Tversky passed away in
1996 and was therefore not eligible but was featured
prominently in the citation).

According to prospect theory, the value V of a sim-
ple prospect that pays $x with probability p (and noth-
ing otherwise) is given by:

V(x,p) = w(p)o(x),

where v measures the subjective value of the conse-
quence x, and w measures the impact of probability p
on the attractiveness of the prospect (see Figure A.2).

(A.3)

Value Function

Prospect theory replaces the utility function u(-)
over states of wealth described in Chapters 1, 3, and 9
with a value function v(-) over gains and losses rela-
tive to a reference point, with v(0) =0. According to
prospect theory, the value function v(-) exhibits the
psychophysics of diminishing sensitivity. That is, the
marginal impact of a change in value diminishes with
the distance from a relevant reference point, so that
the function is concave for gains and convex for losses
(see Figure A.2A). For monetary outcomes, the status
quo generally serves as the reference point distinguish-
ing losses from gains, though a decision-maker’s goals
(Heath et al., 1999) or expectations (Kdszegi and Rabin,
2006) may also provide reference points. (Note that

v(X) 1

-

Losses i

(A) (B)

FIGURE A.2 Representative value function (A) and weighting
function (B) from prospect theory. (A) A prospect theory value func-
tion illustrating concavity for gains, convexity for losses, and a
steeper loss than gain limb. (B) A prospect theory weighting function
illustrating its characteristic inverse-S shape, the tendency to over-
weight low probabilities and underweight moderate to large proba-
bilities, and the tendency for weights of complementary probabilities
to sum to less than one.
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Chapter 24 provides a more detailed discussion of
reference dependency.) Concavity for gains contributes
to risk aversion for gains, as with the standard utility
function (Figure A.1). Convexity for losses, on the
other hand, contributes to risk seeking for losses. For
instance, the disvalue of losing $50 is more than half
the disvalue of losing $100, which will contribute to
a preference for the gamble over the sure loss. This
tendency to be risk averse for moderate-probability
gains and risk seeking for moderate-probability losses
may contribute to the disposition effect in which inves-
tors have a greater tendency to sell stocks in their port-
folios that have risen rather than fallen since purchase
(Odean, 1998; but see also Barberis and Xiong, 2009).

The prospect theory value function is steeper for
losses than gains, a property known as loss aversion.
People typically require more compensation to give up
a possession than they would have been willing to
pay to obtain it in the first place (see, for example,
Kahneman et al., 1990 and Chapter 3). In the context of
decision under risk, loss aversion gives rise to risk
aversion for mixed (gain—loss) gambles so that, for
example, people typically reject a gamble that offers a
.5 chance of gaining $100 and a .5 chance of losing
$100, and require at least twice as much “upside” as
“downside” to accept such gambles (see Table A.2B).
In fact, Rabin (2000) showed that a concave utility
function over states of wealth cannot explain the
normal range of risk aversion for mixed gambles,
because this implies that a decision maker who is
mildly risk averse for small-stakes gambles over a range
of states of wealth must be unreasonably risk averse for
large-stakes gambles — a phenomenon sometimes called
the Rabin paradox. This tendency to be risk-averse for
mixed prospects has been used by Benartzi and Thaler
(1995) to explain why investors require a large premium
to invest in stocks rather than bonds (an important
phenomenon in economics known as the equity premium
puzzle): because of the higher volatility of stocks, inves-
tors who frequently check their returns are more likely
to experience a decrease in nominal value of their port-
folios the more they invest in stocks (see also Barberis
et al., 2001).

TABLE A.2B Risk Aversion for Mixed (Gain—Loss) Gambles

Gain Loss Ratio
61 25 2.44
101 50 2.02
202 100 2.02
280 150 1.87

Gain amounts for which the median participant found 50—50 mixed gambles
equally attractive to receiving nothing, listed by loss amount.
Table A.2B adapted from Tversky and Kahneman (1992).
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It is important to note that loss aversion, which
gives rise to risk aversion for mixed, or gain—loss,
prospects (most people reject a 50—50 chance to gain
$100 or lose $100) should be distinguished from con-
vexity of the value function for losses, which gives rise
to risk-seeking for pure loss prospects (most people
would rather face a 50—50 chance of losing $100 or
nothing, than losing $50 for sure).

Weighting Function

In prospect theory, the value of an outcome is
weighted not by its probability but instead by a decision
weight, w(-), that represents the impact of the relevant
probability on the valuation of the prospect. Decision
weights are normalized so that w(0) =0 and w(1)=1.
Note that w need not be interpreted as a measure of
subjective belief — a person may report that they believe
that the probability of a fair coin landing heads is one-
half, but afford this event a weight of less than one-half
in the evaluation of a prospect.

Just as the value function captures diminishing sen-
sitivity to changes in the number of dollars gained or
lost, the weighting function captures diminishing sen-
sitivity to changes in probability. For probability, there
are two natural reference points: impossibility and
certainty. Hence, diminishing sensitivity implies an
inverse-S-shaped weighting function that is concave
near zero and convex near one, as depicted in
Figure A.2B. It can help explain the fourfold pattern of
risk attitudes (Table A.2A), because moderate to high
probabilities are underweighted (which reinforces the
pattern of risk aversion for gains and risk seeking for
losses implied by the shape of the value function) and
low probabilities are overweighted (which reverses the
pattern implied by the value function and leads to risk
seeking for gains and risk aversion for losses).

To appreciate the intuition underlying how the
value and weighting functions contribute to the four-
fold pattern, refer to Figure A.2B. Informally, the rea-
son that most participants in Tversky and Kahneman’s
(1992) sample would rather have a .95 chance of $100
than $77 for sure is partly because they find receiving
$77 nearly as appealing as receiving $100 (i.e., the
slope of the value function decreases with dollars
gained), and partly because a .95 chance “feels” like
a lot less than a certainty (i.e., the slope of the weight-
ing function is high near one). Likewise, most partici-
pants would rather face a .95 chance of losing $100
than pay $85 for sure, partly because paying $85 is
almost as painful as paying $100 and partly because a
.95 chance “feels” like it is much less than certain. On
the other hand, the reason that most participants
would rather have a .05 chance of $100 than $13 for
sure is that a .05 chance “feels” like more than no
chance at all (i.e., the slope of the weighting function is
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steep near zero) — in fact it “feels” like more than its
objective probability, and this distortion is more pro-
nounced than the feeling that receiving $13 is more
than 13% as attractive as receiving $100. Likewise, the
reason most participants would rather lose $7 for sure
than face a .05 chance of losing $100 is that the .05
chance of losing money looms larger than its respec-
tive probability, and this effect is more pronounced
than the feeling that receiving $7 is more than 7% as
attractive as receiving $100.

The inverse-S-shaped weighting function also
explains the Allais paradox because the ratio of weights
of probabilities .8 and 1 is smaller than the ratio of
weights of probabilities .20 and .25 (so that the differ-
ence between a .80 chance of a prize and a certainty of
a prize in Decision 1 looms larger than the difference
between a .20 and .25 chance of a prize in Decision 2);
similarly, the difference in the weights of probabilities
.99 and 1 is larger than the difference in the weights of
probabilities .33 and .34 (so that the difference between
a .99 chance and a certainty of receiving a large prize in
Decision 3 looms larger than the difference between a
.33 chance and a .34 chance in Decision 4). This inverse-
S-shaped weighting function seems to be consistent
with a range of empirical findings in laboratory studies
(Camerer and Ho, 1994; Tversky and Fox, 1995; Wu and
Gonzalez, 1996, 1998; Gonzalez and Wu, 1999; Wakker,
2001). Overweighting of low-probability gains can help
explain why the attraction of lotteries tends to increase
as the top prize increases even as the chances of win-
ning decreases correspondingly (Cook and Clotfelter,
1993), the attraction to longshot bets over favorites
in horse races, and the overpricing of securities with
positively skewed returns (Barberis and Huang, 2008).
Overweighting of low-probability losses can explain the
attractiveness of insurance (Wakker et al., 1997).

In sum, prospect theory explains attitudes toward risk
via distortions in shape of the value and weighting func-
tions. The data of Tversky and Kahneman (1992) suggest
that the four-fold pattern of risk attitudes for simple
prospects that offer a gain or a loss with low or high
probability (Table A.2A) is driven primarily by curva-
ture of the weighting function, because the value func-
tion is not especially curved for the typical participant in
those studies. Pronounced risk aversion for mixed pro-
spects that offer an equal probability of a gain or loss
(Table A.2B) is driven almost entirely by loss aversion
because the curvature of the value function is typically
similar for losses versus gains and decision weights are
similar for gain versus loss components (see also
Novemsky and Kahneman, 2005).

Framing, Editing, and Bracketing

Expected utility theory and most normative models
of decision making under risk assume description
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invariance: preferences among prospects should not be
affected by how they are described. Decision makers
act as if they are assessing the impact of options on final
states of wealth. Prospect theory, in contrast, explicitly
acknowledges that choices are influenced by how
prospects are cognitively represented in terms of losses
and gains and their associated probabilities. There are
three important manifestations of this principle.

First, this representation can be systematically influ-
enced by the way in which options are described or
framed, a point also developed in Chapters 3 and 24.
Recall that the value function is applied to a reference
point that distinguishes between losses and gains.
A common default reference point is the status guo.
However, by varying the description of options one can
influence how they are perceived. For instance, decisions
concerning medical treatments can differ depending on
whether possible outcomes are described in terms of
survival versus mortality rates (McNeil et al., 1982); recall
that people tend to be risk averse for moderate probabil-
ity gains and risk seeking for moderate probability
losses. Likewise, the weighting function is applied to
probabilities of risky outcomes that a decision maker
happens to identify. The description of gambles can
influence whether probabilities are integrated or segre-
gated and therefore affect the decisions that people
make (Tversky and Kahneman, 1986). For instance,
people have been shown to be more likely to favor
a .25 chance of $32 over a .20 chance of $40 when this
choice was described as a two-stage game in which
there was a .25 chance of obtaining a choice between
$32 for sure or an .80 chance of $40 (i.e., the $32
outcome was more attractive when it was framed as a
certainty). People may endogenously frame prospects
in ways that are not apparent to observers, adopting
aspirations as reference points (Heath et al., 1999),
incorporating expectations into reference point setting
(Kdszegi and Rabin, 2006; Post et al., 2008), or persisting
in the adoption of prior reference points, viewing recent
winnings as house money (Thaler and Johnson, 1990).

Second, people may mentally transform or ‘edit’ the
description of prospects they have been presented. The
original formulation of prospect theory (Kahneman
and Tversky, 1979) suggested that decision makers
edit prospects in forming their subjective representa-
tion. Consider prospects of the form ($x1, p1; $x2, po;
$x3, ps) that offer $x; with (disjoint) probability p;
(and nothing otherwise). In particular, decision makers
are assumed to engage in the following mental
transformations:

1. Combination. Decision makers tend to simplify
prospects by combining common outcomes — for
example, a prospect that offers ($10, .1; $10, .1) would
be naturally represented as ($10, .2);
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2. Segregation. Decision makers tend to segregate sure
outcomes from the representation of a prospect —
for instance, a prospect that offers ($20, .5; $30, .5)
would be naturally represented as $20 for sure plus
a (%10, .5);

3. Cancellation. Decision makers tend to cancel shared
components of options that are offered together —
for example, a choice between ($10, .1; $50, .1) or
($10, .1; $20, .2) would be naturally represented as a
choice between a ($50, .1) or ($20, .2);

4. Rounding. Decision makers tend to simplify
prospects by rounding uneven numbers or
discarding extremely unlikely outcomes — for
example, ($99, .51; $5, .0001) might be naturally
represented as ($100, .5);

5. Transparent dominance. Decision makers tend to
reject options without further evaluation if they are
obviously dominated by other options — for
instance, given a choice between ($18, .1; $19, .1;
$20, .1) or ($20, .3), most people would naturally
reject the first option because it is stochastically
dominated by the second.

In addition to the effects of framing and editing, the
evaluation period over which choices are “bracketed”
may influence risk preferences (Read et al., 1999). For
instance, participants receiving feedback on the out-
come of multiple decisions over longer evaluation
windows may be more risk-neutral than participants
receiving feedback on the outcome of each decision
immediately after it is made (Benartzi and Thaler,
1995; Gneezy and Potters, 1997).

Applications to Riskless Choice

Although prospect theory was originally developed
as an account of decision making under risk, many
manifestations of this model in riskless choice have
been identified in the literature.

Loss Aversion

Loss aversion implies that preferences among con-
sumption goods will systematically vary with one’s ref-
erence point (Kahneman and Tversky, 1991; see also
Bateman et al., 1997), which has several manifestations.
First, the minimum amount of money a person is willing
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to accept (WTA) to part with an object generally exceeds
the minimum amount of money that he is willing to pay
(WTP) to obtain the same object. This pattern, robust in
laboratory studies using student populations and ordi-
nary consumer goods, is even more pronounced for
non-market goods, non-student populations, and when
incentives are included to encourage non-strategic
responses (Horowitz and McConnell, 2002).

Likewise, people tend to value objects more highly
after they come to feel that they own them, a phenom-
enon known as the endowment effect (Thaler, 1980).
For instance, in one well-known study Kahneman and
colleagues (1990) presented a coffee mug with a uni-
versity logo to one group of participants (“sellers”)
and told them the mug was theirs to keep, then asked
these participants whether they would sell the mug
back to them at various prices. A second group of par-
ticipants (“choosers”) were told that they could have
the option of receiving an identical mug or an amount
of money and asked which they preferred at various
prices. Although both groups were placed in strategi-
cally identical situations (walk away with a mug or
money), the sellers, who presumably framed the choice
as a loss of a mug against a compensating gain of
money, quoted a median price of $7.12, whereas the
choosers, who presumably framed the choice as a gain
of a mug against a gain of money, quoted a median
price of $3.12.2

Loss aversion is thought to contribute to the inertial
tendency to stick with status quo options (Samuelson
and Zeckhauser, 1988) and the reluctance to trade.
For instance, in one study Knetsch (1989) provided
students a choice between a university mug and a bar
of Swiss chocolate and found that they had no signifi-
cant preference for one over the other. However, when
some students were assigned at random to receive the
mug and given an opportunity to trade for the choco-
late, 89% retained the mug; when other students were
assigned at random to receive the chocolate and given
an opportunity to trade for the mug, only 10% opted
for the mug.

Loss aversion has been invoked to help explain a
number of anomalous patterns in field data. Notably,
loss aversion can partly account for the powerful
attraction of defaults on behavior — for instance, why
organ donation rates are much higher for European
countries with an opt-out policy than those with an

?Plott and Zeiler (2005) claimed that the endowment effect is an experimental artifact of the particular instructions to participants
who have “misconceptions about the nature of the experimental task” (p. 542). They found that in a variation in which participants
are provided with anonymity and a detailed explanation of and practice with the Becker—DeGroot—Marschak incentive-compatible
mechanism used to derive valuations, the gap between selling and buying prices disappears in a similar “mugs” experiment.
However, Isoni and colleagues (2011) observed that the gap between buyers and sellers persists for lotteries using this modified
procedure, and they speculate that Plott and Zeiler's experimental design may introduce new artifacts that “dampen ... disparities
by reducing the salience of the distinction between buying and selling tasks.”
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opt-in policy (Johnson and Goldstein, 2003), the
tendency of consumer demand to be more sensitive
to price increases than decreases (Hardie et al., 1993),
and the tendency for taxi drivers to quit after they
have met their daily income targets, even on busy
days during which their hourly wages are higher
(Camerer et al., 1997). In fact, Fehr and Goette (2007)
found a similar pattern among bicycle messengers in
which only those who exhibited loss-averse prefer-
ences for mixed gambles tended to exert more effort
per hour when their wage per completed job
decreased. Interestingly, professional golfers appear
to be more accurate when attempting putts that would
earn them a score at or over par than when attempting
similar putts that would earn them a score below par,
suggesting that loss aversion for hole-by-hole scores
influences focus and effort (Pope and Schweitzer, 2011).

The stronger response to losses than foregone gains
also manifests itself in evaluations of fairness. In
particular, most people find it unfair for an employer
or merchant to raise prices on consumers or to lower
wages for workers unless the employer or merchant is
defending against losses of their own, and this places a
constraint on profit seeking even when the market
clearing price (wage) goes up (down; Kahneman ef al.,
1986). For instance, people find it more fair to take
away a rebate than to impose a price increase on custo-
mers; most people think it is unfair for a hardware
store to exercise their economic power by raising the
price of snow shovels after a snowstorm.

Loss aversion is also evident in riskless choice when
consumers face tradeoffs of one product attribute
against one another. For instance, Kahneman and
Tversky (1991) asked participants to choose between
two hypothetical jobs: Job x was characterized as
“limited contact with others” and a 20-minute daily
commute; Job y was characterized as “moderately socia-
ble” with a 60-minute daily commute. Participants were
much more likely to choose Job x if they had been told
that their present job was socially isolated with a 10-
minute commute than if they had been told it was very
social but had an 80-minute commute, consistent with
the notion that they are loss averse for attributes that
present relative advantages and disadvantages. Loss
aversion when making tradeoffs may partially explain
the ubiquity of brand loyalty in the marketplace.

Given the disparate manifestations of loss aversion,
it is natural to ask to what extent there is any con-
sistency in a person’s degree of loss aversion
across these different settings. Gichter et al. (2010)
approached customers of a car manufacturer and,
through a series of simple tasks, determined each
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customer’s coefficient of loss aversion in a risky con-
text, as well as a measure of the endowment effect
that compares the minimum amount of money each
participant was willing to accept to give up a model
car and their maximum willingness to pay to acquire
the model car. Remarkably, the Spearman correlation
between the risky and riskless measures was .64,
suggesting some consistency in the underlying trait of
loss aversion.

Curvature of the Value Function

Not only does the difference in steepness of the
value function for losses versus gains affect riskless
choice, but so does the difference in curvature.
Notably, Heath et al. (1999) asserted that goals can
serve as reference points that inherit properties of the
prospect theory value function. For instance, most peo-
ple believe that a person who has completed 42 sit-ups
would be willing to exert more effort to complete one
last sit-up if he had set a goal of 40 than if he had set a
goal of 30, because the value function is steeper (above
the reference point) in the former than in the latter
case. Conversely, most people believe that a person
who has completed 28 sit-ups would be willing to
exert more effort to complete one last sit-up if he had
set a goal of 30 than if he had set a goal of 40, because
value function is steeper (below the reference point) in
the former case than the latter case.

The cognitive activities that people use to frame and
package gains and losses, known as mental accounting
(Thaler, 1980, 1985, 1999), can influence the way in
which riskless outcomes are experienced. In particular,
due to the concavity of the value function for gains,
people derive more enjoyment when gains are segre-
gated (e.g., it feels better to win two lotteries on two
separate days); due to the convexity of the value func-
tion for losses, people find it less painful when losses
are integrated (e.g., it feels better to pay a parking
ticket the same day I pay my taxes) — but see Linville
and Fischer (1991).

Extensions to Uncertainty

As mentioned earlier, decision theorists distinguish
between decisions under risk, in which probabilities
are known to the decision maker, and decisions under
uncertainty, in which they are not. This distinction is
of critical importance because many investigations of
decision-making in naturalistic contexts (such as finan-
cial, legal, and medical decisions) and many empirical
paradigms (including many brain imaging studies)

3We note, however, that Abdellaoui et al. (2013b) did not find a strong relationship between loss aversion measured in a risky choice

versus inter-temporal choice context.
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entail decisions in which participants are not presented
simple and clearly defined chance gambles. Thus,
researchers wishing to understand behavior in these
contexts must understand complications that arise
under uncertainty.

The original formulation of prospect theory (hence-
forth known as OPT; Kahneman and Tversky, 1979)
applies to decisions under risk and involving at most
two nonzero outcomes. Cumulative prospect theory
(henceforth CPT; Tversky and Kahneman, 1992; see
also Luce and Fishburn, 1991; Wakker and Tversky,
1993) accommodates decisions under uncertainty and
any finite number of possible outcomes.* A thorough
account of CPT is beyond the scope of this chapter, we
will only sketch out its distinctive features. Interested
readers should refer to the original paper (Tversky and
Kahneman, 1992) for further details.

Cumaulative Prospect Theory

When considering simple chance prospects with at
most two nonzero outcomes, two distinctive features
of CPT are important.

First, cumulative prospect theory segregates value
into gain portions and loss portions, with separate
weighting functions for losses and gains (i.e., CPT
decision weights are sign-dependent).”

Second, CPT applies decision weights to cumulative
distribution functions rather than single events (i.e.,
CPT decision weights are rank-dependent, as in a rank-
dependent utility theory as discussed in Chapter 9).° That
is, each outcome x is weighted not by its probability but
by the cumulated probabilities of obtaining an outcome
at least as good as x if the outcome is positive, and at
least as bad as x if it the outcome is negative.

More formally, consider a chance prospect with two
nonzero outcomes (x, p; y, q) that offers $x with proba-
bility p and $y with probability g (otherwise nothing).
Let w'(-) and w™ (-) be the weighting function for gains
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and losses, respectively. The CPT valuation of the
prospect is given by:

w™ (p)o(x) + w (q)o(y),

for mixed prospects, x <0<y (A4)

W'+ - @@+ @)
for pure gain prospects, 0 =x <y '

[w™(p +9) —w (@) +w (gouy) (A6)

for pure loss prospects, y <x =0.

The first equation illustrates sign dependence: a dif-
ferent weighting function is applied separately to the
loss and gain portions of mixed prospects. The second
and third equations illustrate rank dependence for
gains and losses, respectively: extreme () outcomes
are weighted by the impact of their respective proba-
bilities, whereas intermediate outcomes (x) are
weighted by the difference in impact of the probability
of receiving an outcome at least as good as x and the
impact of the probability of receiving an outcome that
is strictly better than x. A more general characteriza-
tion of CPT that applies to any finite number of out-
comes and decisions under uncertainty is included in
Box 1 at end of this chapter.

For decision under risk, the predictions of CPT coin-
cide with OPT for all two-outcome risky prospects and
all mixed (gain—loss) three-outcome prospects’ when
one outcome is zero, assuming w' =w”. Because elici-
tation of prospect theory parameters (reviewed in the
following section) usually requires the use of two-
outcome prospects, we illustrate how they coincide for
a two-outcome (pure gain) prospect below. Consider a
prospect (x, p; y) that offers $x with probability p and
otherwise $y, where x >1v. According to CPT:

V(x,p;y) = [1 — wp)] v(y) + w(p) v(x). (A7)

“The distinction between OPT and CPT is an important one that is often under-appreciated by those outside decision theory. For a
discussion of the limitations of CPT to finite discrete distributions and an extension to continuous distributions see Rieger and Wang (2008).

®Wu and Markle (2008) document systematic violations of gain-loss separability. Their results suggest slightly different weighting
function parameter values for mixed (gain—loss) prospects than for single domain (pure gain or pure loss) prospects. See also
Birnbaum and Bahra (2007).

®Rank-dependence is motivated in part by the concern that nonlinear decision weights applied directly to multiple simple outcomes
can give rise to violations of stochastic dominance. For instance, a prospect that offers a .01 chance of $99 and a .01 chance of $100
might be preferred to a prospect that offers a .02 chance of $100 due to the overweighting of low probabilities, even though the latter
prospect dominates the former prospect. OPT circumvents this problem for simple prospects by assuming that transparent violations
of dominance are eliminated in the editing phase; CPT handles this problem through rank-dependent decision weights that sum to
one for pure gain or loss prospects. For further discussion of advantages of CPT over OPT when modeling preferences involving
complex prospects, see Fennema and Wakker (1997).

"Gonzalez and Wu (2003) estimated prospect theory weighting functions and value functions obtained from certainty equivalents for
two-outcome gambles, in which OPT and CPT coincide, and applied these estimates to predict certainty equivalents for three-
outcome gambles, in which they do not. Interestingly, they found systematic over-prediction for OPT and systematic under-
prediction for CPT.
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According to OPT, decision makers tend to invoke
the editing operation of segregation, treating the smaller
outcome y as a certainty, and reframing the prospect
as a p chance of getting an additional x—y. Thus, we
get:

V(x,p:y) = v(y) + wp)ox) — oy)l,

which can be rearranged into the same expression
as above. It is also easy to see that when y =0, V(x,p) =
w(p) v(x) under both CPT and OPT.

(A.8)

Weighting Probabilities: The Two-Stage Model

As we have seen, the risky weighting function is
assumed to exhibit greater sensitivity to changes in
probability (i.e., higher slope) near the natural bound-
aries of 0 and 1 than in the midpoint of the scale.
A characterization of the weighting function that
generalizes this observation from risk to uncertainty
through the measure of bounded subadditivity is
presented in Tversky and Fox (1995); see also Tversky
and Wakker (1995), Wu and Gonzalez (1999).
Informally, bounded subadditivity quantifies a decision
maker’s diminished sensitivity to events when they
are added or subtracted from intermediate events
compared to when they are added to impossibility or
subtracted from certainty.

Several studies suggest that decisions under uncer-
tainty accord well with a two-stage model in which
participants first judge the likelihood of events on
which outcomes depend, then apply the inverse-S
shaped weighting function to these probabilities, con-
sistent with prospect theory (Tversky and Fox, 1995;
Fox and Tversky, 1998; for a theoretical treatment see
Wakker, 2004). That is, the uncertain decision weight
W of event E is given by

W(E) = w(P(E)), (A9)

where P(E) is the (nonadditive) judged probability
of event E and w(.) is the risky weighting function.
For instance, consider the prospect “win $100 if the Los
Angeles Lakers beat the Boston Celtics.” A person’s
decision weight of “Lakers beat the Celtics” can be pre-
dicted well from his risky weighting function applied
to his judged probability of the event “Lakers beat the
Celtics.” Judged probabilities are assumed to accord
with support theory (Tversky and Koehler, 1994;
Rottenstreich and Tversky, 1997), a behavioral model
that conceives of judged probability as the proportion
of support that a person associates with a focal
hypothesis (for example, the Lakers will win) against
its complement (the Celtics will win). Fox and Tversky
(1998) review several studies that demonstrate the
predictive validity of the two-stage model (see also
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Wu and Gonzalez, 1999; Fox and See, 2003; but see
also Kilka and Weber, 2001).

Ambiguity Aversion and Source Preferences

Decisions under uncertainty can be further compli-
cated by a decision-maker’s preference to bet on a par-
ticular source of uncertainty. Ellsberg (1961) observed
that people prefer to bet on events with known rather
than unknown probabilities, a phenomenon known as
ambiguity aversion (for a review, see Chapter 3 and
Camerer and Weber, 1992; see also Fox and See, 2003).
This phenomenon may partially explain, for example,
the common preference to invest in the domestic
stock market and under-diversify into foreign markets
(French and Poterba, 1991). Ambiguity aversion
appears to be driven by reluctance to act in situations
in which a person feels comparatively ignorant pre-
dicting outcomes (Heath and Tversky, 1991), and such
preferences tend to diminish or disappear in the
absence of a direct comparison between more and less
familiar events or with more or less knowledgeable
individuals (Fox and Tversky, 1995; Chow and Sarin,
2001; Fox and Weber, 2002). For a discussion of
how source preferences can be incorporated into
the two-stage model see Fox and Tversky (1998);
for a more detailed account of “source functions”
in a prospect theory framework see Abdellaoui
et al. (2011a).

Decisions from Experience

In the standard decision under risk paradigm, a
decision maker is presented with outcomes that occur
with probabilities that are either transparent (e.g., win
$100 if a fair coin lands heads) or explicitly described
(e.g., win $100 with probability .5). In situations where
people learn probability distributions over possible
outcomes by sampling from these distributions (as in
the lowa Gambling Task or Balloon Analogue Risk Task),
a straightforward application of prospect theory may
not apply, a point developed in Chapter 9. Notably,
Hertwig and colleagues (2004) developed a decision
from experience paradigm in which participants sample
from different prospects (i.e., different probability dis-
tributions over possible outcomes) as many times as
they like before choosing between them, observing
choice patterns that appear at first glance to diverge
from prospect theory. This has given rise to a robust
literature on the putative description-experience gap (for
reviews, see Hertwig and Erev, 2009; Hertwig, 2012).
Researchers wishing to study prospect theory using
paradigms in which participants learn probability
distributions through sampled experience would be
well-advised to pay close attention to this developing
literature.
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In general, at least three complications can arise
when employing a sampling paradigm to investigate
prospect theory-like behavior: (1) sampled probabili-
ties do not necessarily coincide with objective probabil-
ities; (2) subjective beliefs do not necessarily coincide
with sampled experience; (3) probability weighting
may be less distorted when outcomes are experienced
rather than described. Below we briefly elaborate on
each of these points.

First, a property of the binomial distribution® is that
very rare events are generally more likely to be under-
sampled than over-sampled and the opposite is true
for very common events. To illustrate, imagine a situa-
tion in which a decision maker samples outcomes
from two decks of cards: the first deck offers a .05
chance of $100 (and nothing otherwise) while the sec-
ond deck offers $5 for sure. If decision makers sample
a dozen cards from each deck, most of them will never
sample $100 from the first deck and therefore face an
apparent choice between $0 for sure and $5 for sure,
and therefore forgo the 5% chance of $100, contrary
to the pattern typically observed in decision under risk
(see Table A.2A). (For further discussion of these
issues see Hertwig et al., 2004 and Fox and Hadar,
2006). Of course, this problem can be solved by
ensuring that participants sample from a distribu-
tion exhaustively and without replacement so that
the sampled distribution matches the objective prob-
ability distribution over outcomes.

Second, subjective beliefs of participants may not
coincide with sampled experience. For instance, a par-
ticipant who samples distribution A that offers $4
with probability .8 and distribution B that offers $3
with certainty may favor a draw from distribution A
(contrary to the modal prospect theory response that
underweights a high probability relative to certainty)
because she treats distribution B as uncertain as well.
Such an intuition may be especially strong, if prior
trials have involved two distributions with both zero
and nonzero outcomes (Hadar and Fox, 2009). This
problem may be solved by making it abundantly clear
to participants that they have sampled the complete
probability distribution over all possible outcomes.
Nevertheless, participants in some experiments may
have an imperfect memory for the outcomes they
have sampled. For instance, they may afford greater
weight to more recently sampled outcomes (Hertwig
et al., 2004), or they may treat streaks of sampled
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outcomes as self-correcting (i.e., the gambler’s fallacy)
or self-perpetuating (i.e., believe they have a “hot
hand”; see, e.g., Ayton and Fischer, 2004).

Third, it appears that even when participants’ experi-
ence coincides with objective probability distributions
that they are forced to sample exhaustively without
replacement, their decisions from experience may diverge
from decisions from description (Ungemach et al., 2009).
In a series of studies Fox and colleagues (2013) replicate
the persistence of this description—experience gap, and
find that the data fit a prospect theory model with linear
decision weighting in decisions from sampled experience
(outcomes were weighted by their respective
probabilities). Likewise, Hilbig and Glockner (2011) find
evidence consistent with linear probability weighting
using an “open sampling” paradigm in which partici-
pants view a matrix of possible outcomes presented in
proportion to their respective probabilities. Fox and col-
leagues (2013) argue that sampling forces participants to
allocate attention over possible outcomes in proportion to
their respective probabilities, whereas describing proba-
bilities of possible outcomes allows participants to allocate
attention more equally so that they overwei§ht low proba-
bilities and underweight high probabilities.

Challenges to Prospect Theory

While prospect theory has been the most successful
descriptive model of decision under risk yet advanced,
there have been a few noteworthy challenges to its
descriptive validity. Researchers interested in how the
brain processes decisions under risk should attend
closely to these challenges because they also suggest
possible alternative processes on which people may
rely to make such decisions (for more discussion on
alternative models of risky choice, see Chapter 3). We
highlight three noteworthy challenges here.

Violations of Coalescing and Configural
Weighting Models

Birnbaum (2008) recently reviewed several paradoxes
that challenges predictions made by prospect theory. In
particular, he examines 11 paradoxes for which pros-
pect theory is not able to correctly predict behavior.
One example arises from violations of coalescing.
Coalescing means that two branches of a gamble that
have the same outcome are treated as one branch with
the combined probability. This principle is embedded

8The binomial distribution is the discrete probability distribution of the number of successes in a sequence of 1 independent binary
experiments (e.g., coin flips), each of which yields success with probability p.

“Decisions from experience may also exhibit ambiguity aversion. Abdealloui and colleagues (2011c) asked participants to choose
between risky prospects sampled using the method of Hertwig and colleagues (2004) and explicitly certain amounts of money. Using
this paradigm, they found when making choices involving sampled prospects, participants exhibited similar curvature in the
probability weighting function for gains but diminished elevation (and no change in value function parameters).



544

in the editing rule in original prospect theory and the
rank-dependent representation in cumulative prospect
theory, respectively. The author discusses experimental
findings in which the assumption of coalescing is
violated. He argues instead for a class of configural
weighting models in which people treat gambles not as
prospects or probability distributions but as “trees
with branches” in which each represented possible out-
comes receives a weight. For instance, Birnbaum’s trans-
fer of attention exchange (TAX) model represents branch
weights as reflecting a transfer of attention from branch
to branch as a decision maker attends to different possi-
ble consequences of a lottery. Branches involving higher
probabilities attract more attention, as do branches
involving lower outcomes for risk-averse individuals.

Heuristic Models

Expected value maximization, expected utility the-
ory, prospect theory, and even configural weighting
models are all examples of expectation-based models in
which decision makers are assumed to act to maximize
some representation of aggregate value of a lottery
that is a weighted average of subjective values of pos-
sible outcomes. In contrast, heuristic models assume
that people make decisions based on a simplified set
of rules. In particular, Brandstdtter and colleagues
(2006) propose the priority heuristic that suggests a par-
ticular order in which reasons for choosing one pros-
pect over another are examined (minimum gain,
probability of minimum gain, maximum gain). The
stopping rule states that a decision would be made if
the minimum gains differ by one tenth (or more) of
the maximum gain. If not, the next reason would be
examined from the order set out in the priority rule,
that is the probabilities of the minimum gains would
be compared. Brandstétter and colleagues (2006) pro-
vide evidence suggesting that the priority heuristic can
explain many prominent violations of expected utility
such as the Allais paradox and the reflection effect,
and outperforms cumulative prospect theory in
describing some observed choice behaviors. However,
in more careful tests Glockner and Betsch (2008) and
Glockner and Pachur (2012) conclude that cumulative
prospect theory better predicts choices than various
heuristic rules including the priority heuristic.

Violations of Internality and Direct Risk Aversion

In another challenge to expectation-based models,
Gneezy and colleagues (2006) document the uncertainty
effect in which participants value risky prospects below
their worst possible realization. For instance, in one
study participants priced a 50—50 chance of receiving
either a $50 or else a $100 Barnes and Noble gift certifi-
cate lower than another group priced a certainty of
receiving a $50 gift certificate. This pattern violates the
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internality axiom, according to which the value of a
risky prospect must lie between the values of that pro-
spect’s lowest and highest outcomes. It also suggests
that decision makers may sometimes respond to risky
prospects by discounting their subjective value due to
a direct aversion to uncertainty. Research on the uncer-
tainty effect has prompted a lively debate in the litera-
ture, with several researchers disputing the generality
of the result. For instance, Yang and colleagues (2012)
provide evidence suggesting the effect may be artifact
of the way in which prospects are described (e.g., as
“lotteries” versus “gift certificates”).

PROSPECT THEORY MEASUREMENT

Several applications of prospect theory — from neu-
roeconomics to decision analysis to behavioral finance
— require individual assessment of value and weight-
ing functions. In order to measure the shape of the
value and weighting function exhibited by participants
in the laboratory, we must first discuss how these
functions can be formally modeled. We next discuss
procedures for eliciting values and decision weights.

Parameterization

It is important to note that in prospect theory value
and weighting functions are characterized by their qualita-
tive properties rather than particular functional forms. It
is often convenient, however, to fit data to equations that
satisfy these qualitative properties. A survey of parame-
terizations of prospect theory’s value and weighting
functions can be found in Stott (2006). We review below
the functional forms that have received the most atten-
tion in the literature to date.

Value Function

The value function is assumed to be concave for
gains, convex for losses, and steeper for losses than for
gains. By far the most popular parameterization,
advanced by Tversky and Kahneman (1992) relies on a
power function:

v ew={ T 55

where «, >0 measure the curvature of the value
function for gains and losses, respectively, and A is the
coefficient of loss aversion. Thus, the value function
for gains (losses) is increasingly concave (convex) for
smaller values of o (3) <1, and loss aversion is more
pronounced for larger values of A>1. Tversky and
Kahneman (1992) estimated median values of o= 0.88,
B=0.88, and A=2.25 among their sample of college

(A.10)
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students. In prospect theory, the power function is
equivalent to preference homotheticity: as the stakes of
a prospect (x, p) are multiplied by a constant k then
so is the certainty equivalent of that prospect, c(x, p)
so that c(kx,p) =kc(x,p) (see, e.g., Tversky, 1967).
Empirically, this assumption tends to hold up only
within an order of magnitude or so, and as the stakes of
gambles increase by orders of magnitude, risk aversion
tends to increase for gains — especially when the stakes
are real (Holt and Laury, 2002), although the evidence
for losses is mixed (Fehr-Duda et al., 2010). Thus, for
example, a person who is indifferent between $3
and ($10, .5) will tend to strictly prefer $30 over
(3100, .5). Nevertheless, most applications of prospect
theory have assumed a power value function.'
Other common functional forms include the logarith-
mic function v(x) =In(a + x), originally proposed by
Bernoulli (1738), which captures the notion that mar-
ginal utility is proportional to wealth, and quadratic
v(x) = ax — x?, which can be reformulated in terms of
a prospect’s mean and variance, which is convenient
in finance models (For a discussion of additional
forms including exponential and expo-power, see
Chapter 9 or Abdellaoui et al., 2007a).

Surprisingly, there is no canonical definition or
associated measure of loss aversion, though several
have been proposed. First, in the original formulation
of prospect theory (Kahneman and Tversky, 1979) loss
aversion was defined as the tendency for the negative
value of losses to be larger than the value of corre-
sponding gains (i.e., —ov(—x)>v(x) for all x>0) so
that a coefficient of loss aversion might be defined, for
example, by the mean or median value of —v(— x)/v(x)
over a particular range of x. Second, the aforementioned
parameterization (V1) from Tversky and Kahneman
(1992) that assumes a power value function implicitly
defines the loss aversion as the ratio of value of losing
a dollar to gaining a dollar (i.e., —v(— $1) >v($1)) so
that the coefficient is defined by —o(—$1)/v($1).
Third, Wakker and Tversky (1993) defined loss aversion
as the requirement that the slope of the value function
for any amount lost is larger than the slope of the value
function for the corresponding amount gained (e,
v'(—x)>7v(x)) so that the coefficient can be defined
by the mean or median value of v'(—x)/v'(x). Fourth,
Kébberling and Wakker (2005) pointed to the kink at the
origin so that the coefficient can be defined as the ratio of
slope of v(x) as measured from below x =0 to above
x=0. Note that if one assumes a simplified value
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function that is piecewise linear (as in Tom et al., 2007),
then all four of these definitions coincide. For a fuller
discussion see Abdellaoui et al. (2007b).

Weighting Function

In fitting their data Tversky and Kahneman (1992)
introduced a single-parameter weighting function:

P (A11)

W1 T
o (7 +0=p)'"

w(p) =

This form is inverse-S shaped, with overweighting
of low probabilities and underweighting of moderate
to high probabilities for values of ~v<1. This function
is plotted for various values of ~ in Figure A.3A.

Probably the most popular form of the weighting
function, due to Lattimore and colleagues (1992; see
also Goldstein and Einhorn, 1987), assumes that the
relation between w and p is linear in a log-odds metric:

op”

W &+ Ay

where 6>0 measures the elevation of the weigthing
function and ~>0 measures its degree of curvature.
The weighting function is more elevated (exhibiting
less overall risk aversion for gains, more overall risk
aversion for losses) as & increases and more curved
(exhibiting more rapidly diminishing sensitivity to
probabilities around the boundaries of 0 and 1) as v<1
decreases (the function exhibits an S-shaped pattern
that is more pronounced for larger values of v > 1.1
Typically the decision weights of complementary events
sum to less than one (w(p) + w(l —p)<1), a property
known as subcertainty (Kahneman and Tversky, 1979).
This property is satisfied whenever 6 <1. The Lattimore
and colleagues (1992) function is plotted for various
values of the elevation parameter 6 and curvature
parameter ~ in Figures A.3B and A.3C, respectively.
Prelec (1998; also Prelec, 2000) derived a functional
form of the weighting function that accommodates
three principles: (1) overweighting of low probabilities
and underweighting of high probabilities; (2) subpro-
portionality of decision weights (a condition that
derives from the common ratio effect, Decisions 1 and
2 above); (3) subadditivity of decision weights
(a condition that derives from the common conse-
quence effect, Decisions 3 and 4 above). These three
principles are all subsumed by a single axiom called

'This may be justified in light of recent evidence suggesting that increasing relative risk aversion for gains is largely attributable to
variation in the weighting function rather than the value function (Fehr-Duda et al., 2010).

"For more on elevation versus curvature of the probability weighting function and a preference foundation for a two-parameter

family of weighting functions, see Abdellaoui et al. (2010).
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FIGURE A.3 Most common parametric forms used for modeling the probability weighting function from prospect theory. (A) Tversky
and Kahneman'’s (1992) function (W1) for various values of ~. (B) Lattimore and colleagues’ (1992) function for various values of § assuming
~=0.5 (W2). (C) Lattimore and colleagues’ (1992) function for various values of ~ assuming &6 = 0.5 (W2). (D) Prelec’s (1998) two-parameter
function for various values of 6 assuming ~ = 0.5 (W3A). (E) Prelec’s (1998) function for various values of ~ assuming 6 = 1, which results in a
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compound invariance'> which implies the following
functional form of the weighting function:

(W3A)  w(p) = exp[ — &(~In p)'], (A13)
where 6, v> 0. Note that when 6 =1, Prelec’s function
collapses to a single-parameter form:

(W3B)  w(p) = exp[ — (-In p)'], (A.14)
which implies a weighting function that crosses the
identity at 1/e. Prelec’s two-parameter function is plot-
ted for various values of the elevation parameter & in
Figure A.3D, and the one-parameter function (.e.,
6=1) is plotted for various values of the curvature
parameter ~ in Figure A.3E.

The prospect theory value and weighting function
parameters can all be estimated for individuals using sim-
ple choice tasks. Table A.3 presents measured parameters
for monetary gambles from several laboratory and online
studies that have assumed a power value function and
various weighting functions described above."

Although the typical measured values of these para-
meters suggest an S-shaped value function (0<a<1;
0<B<1) with loss aversion (A>1), and an inverse-S
shaped weighting function that crosses the identity line
below .5, there is considerable heterogeneity between
individuals in these measured parameters. For instance,
in a sample of 10 psychology graduate students evaluat-
ing gambles involving only the possibility of gains,
Gonzalez and Wu (1999) obtained measures of « in the
range from 0.23 to 0.68 (V1), § in the range from 0.21 to
1.51, and ~ in the range from 0.15 to 0.89 (W2).

As a practical matter, although the two-parameter
functions (W2) and (W3) have different axiomatic
implications, they are difficult to distinguish empiri-
cally in the normal range (i.e., .01 to .99) of probabili-
ties (see Gonzalez and Wu, 1999). For the remainder of
the chapter, we will refer to the parameters from the
Lattimore et al. (1992) function (W2).

Interaction of V(-) and W(-)

As mentioned above, prospect theory value and
weighting functions both contribute to observed risk
attitudes: concavity (convexity) of the value function
contributes to risk aversion (seeking) for pure gain
(loss) prospects that is reinforced by underweighting
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of moderate to high probabilities and is reversed by
overweighting of low probabilities; loss aversion con-
tributes to risk aversion for mixed prospects. Note that
outcome valuation and probability weighting appear
to contribute independently to risk preference: recent
empirical work suggests that value and weighting
function parameters are not strongly correlated (Qui
and Steiger, 2011; but see also Toubia et al., 2013).

To see more clearly how the value and weighting
functions interact, consider the simple case of a prospect
(x, p) that offers $x with probability p (and nothing
otherwise). Let c(x, p) be the certainty equivalent of (x, p),
that is, the sure amount that a person finds equally
attractive to the prospect. For instance, a decision maker
for whom ¢(100, .5) = 30 is indifferent between receiving
$30 for sure or a 50—50 chance of $100 or nothing. Thus,
this decision maker would strictly prefer the prospect
to $29 and would strictly prefer $31 to the prospect.
If we elicit certainty equivalents for a number of pro-
spects in which we hold x constant and vary p, then
we can derive a plot of normalized certainty equivalents,
¢/x as a function of probability. Such a plot can be
instructive, because it indicates probabilities (of two-
outcome gambles) for which the decision maker is risk
seeking (c/x >p), risk neutral (c¢/x=p) and risk averse
(c/x <p) by whether the curve lies above, on, or below
the identity line, respectively.

To see how w(-) and v(-) jointly contribute to risk atti-
tudes, note that, under prospect theory, V(c)=V(xp),
so that v(c) = w(p)v(x) or w(p) = v(c)/v(x). Assuming the
power value function (V1), we get w(p) = (¢/x)°, or

c/x= w(p)l/“ (A.15)

In the case of gains, normalized certainty equivalents
will increase with the parameter «, and assuming a
typical concave value function (o < 1), they will be lower
than corresponding decision weights. These observa-
tions give rise to two important implications. First, over-
weighting of low probabilities does not necessarily
translate into risk seeking for low probability gains. To
illustrate, consider the weighting function obtained from
the median data of Gonzalez and Wu (1999), assuming
the Lattimore and colleagues (1992) function (W2),
with & =0.77, ~v=0.44, which illustrates considerable
overweighting of low probabilities; for example,
w(.05) = .17. In that study the authors obtained « in the
range from 0.68 (moderate concavity) to 0.23 (extreme

2Defined as: for any outcomes x, y, X', i/, probabilities g, p, 1, s, and the compounding integer N =1, if (x,p) ~(y,9) and (x,r) ~ (y,5)

then (x’ ,pN ) ~(y’,qN ) implies (x’ N ~ M.

It is an open question in what ways measured parameters vary across populations and settings. For instance, in one recent field
study, prospect theory parameters fitted to US stock option prices were somewhat more linear (i.e., closer to expected value
maximization) than typical laboratory studies have implied (Gurevich et al., 2009).
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TABLE A.3 Measured Prospect Theory Parameters from Several Studies

V1) v(x) = { —AJ(C:c)B iig
Study n Population IC ET o 6] A
Tversky and Kahneman (1992) 25 Graduate students f mie 0.88 0.88 2.25
Camerer and Ho (1994) - Meta-analysis of nine studies - - 0.23
Wu and Gonzalez (1996) 420 Undergraduate students f pool 0.49
Gonzalez and Wu (1999) 10 Graduate students (psychology) g med 0.49
Abdellaoui (2000) 46 University students (economics) g med 0.89 0.92
Etchart-Vincent (2004) 35 University students (economics) f mie 0.97
Abdellaoui et al. (2005) 41 Graduate students (business) f mie 0.91 0.96
Stott (2006) 96 University students g mie 0.19
Abdellaoui et al. (2007b) 48 University students (economics) f mie 0.72 0.73 1.69
Abdellaoui et al. (2008) 48 Graduate students (econ. and math.) g mie 0.86 1.06 2.61
Rieskamp (2008) 30 University students b mie 0.93 0.89 1.00
Harrison and Rutstrom (2009) 158 University students (business) b mie 0.71 0.72 1.38
Booij et al. (2010) 1935 General public f pool 0.86 0.83 1.58
Bruhin et al. (2010) 448 University students b mie 0.94 1.14
Tanaka et al. (2010) 181 Vietnamese villagers b mnie 0.61 =a 2.63
Abdellaoui et al. (2011b) 52 Undergraduate students (economics) g mie 0.86
Abdealloui et al. (2011c) 61 Undergraduate students (business) g mie 0.79 0.96 2.47
Glockner and Pachur (2012) 66 University students b mie 0.74 =a 1.16
Zeisberger et al. (2012) 86 Undergraduate students b mie 1.00 0.91 1.42
Abdellaoui et al. (2013a) 46 Financial professionals f mie 0.73 0.86 1.31
Erner et al. (2013) 148 University students (business) f mie 1.15 0.93 2.51
Toubia ef al. (2013) 137 Amazon Mechanical Turk b mie 0.46 =« 1.78
Vrecko and Langer (2013) 202 Undergraduate students b mie 1.19 0.98 1.39
W wp) =P

(p7+@A=p))
Study n Population IC ET ~* N
Tversky and Kahneman (1992) 25 Graduate students f mie 0.61 0.69
Camerer and Ho (1994) - Meta-analysis of nine studies — - 0.56
Wu and Gonzalez (1996) 420 Undergraduate students f pool 0.71
Abdellaoui (2000) 46 University students (economics) g med 0.60 0.70
Stott (2006) 96 University students g mie 0.96
Rieskamp (2008) 30 University students b mie 0.77 0.76
Harrison and Rutstrom (2009) 158 University students (business) b mie 0.91 0.91
Glockner and Pachur (2012) 66 University students b mie 0.61 0.89
Zeisberger et al. (2012) 86 Undergraduate students b mie 0.86 0.82
Vrecko and Langer (2013) 202 Undergraduate students b mie 0.72 0.63

(Continued)



APPENDIX 549

TABLE A.3 (Continued)
2

(W2) w(p) = 5]174‘6?%}1)7
Study n Population IC ET ~* 5" N &
Tversky and Fox (1995) 40 University students (football fans) f med 0.69 0.77
Wu and Gonzalez (1996) 420 Undergraduate students f pool 0.68 0.84
Gonzalez and Wu (1999) 10 Graduate students (psychology) g med 0.44 0.77
Abdellaoui (2000) 46 University students (economics) g med 0.60 0.65 0.65 0.84
Abdellaoui et al. (2005) 41 Graduate students (business) f med 0.83 0.98 0.84 1.35
Stott (2006) 96 University students g mie 0.96 1.40
Booij et al. (2010) 1935 General public f pool 0.62 0.77 0.59 1.02
Bruhin et al. (2010) 448 University students b mie 0.38 0.93 0.40 0.99
Abdealloui et al. (2011c) 61 Undergraduate students (business) b mie 0.65 0.70 0.73 0.78
Glockner and Pachur (2012) 66 University students b mie 0.67 0.63 0.81 1.87
Erner et al. (2013) 148 University students (business) f mie 0.93 0.75 0.87 1.10
(W3A) w(p) = o CIn(p))”
Study n Population IC ET ~* 6" N &
Stott (2006) 96 University students g mie 1.00 1.00
Abdellaoui et al. (2011b) 52 Undergraduate students (econ.) g mie 0.62 1.20
van de Kuilen and Wakker (2011) 78 Undergraduate students g mie 1.15 1.58
(W3B) w(p) = e~ Cin(p)”
Study n Population IC ET ~F N
Wu and Gonzalez (1996) 420 Undergraduate students f pool 0.74
Stott (2006) 96 University students g mie 0.94
Tanaka et al. (2010) 181 Vietnamese villagers b mnie 0.74
Toubia ef al. (2013) 137 Amazon Mechanical Turk g mie 0.53

This table lists parameter estimates taken from several studies. The column labeled “IC” refers to the incentive compatible payment with “f” fixed
(noncontingent) payment, “g” variable (contingent) payment for gains only, and “b” variable payment for both gains and losses. The column labeled “ET” refers
to the estimation type with “mie” medians of individual estimates, “mnie” means of individual estimates, “med” estimates using median data, and “pool”
estimates using pooled data. In cases where both the estimates using median data as well as the medians of individual estimates were reported, only the medians

of the individual estimates are listed. Criteria for inclusion were monetary prospects, decisions under risk, and estimates obtained using the power value

function. In some cases, parameters are averaged across conditions or only selected conditions are reported. “=o” indicates that one common curvature
parameter was fitted for both gains and losses. Definitions of loss aversion vary across studies (see Abdellaoui et al., 2007b).

concavity) for their 10 participants. Using these extreme
values, we obtain wildly different c¢/x functions as
depicted in Figure A.4. For instance, given these values
(100, .05) = 7.65 and 0.05, respectively, indicating moder-
ate risk seeking and extreme risk-aversion, respectively.
Second, the interaction of value and weighting
functions makes it difficult to empirically distinguish
variations in the measured elevation of the weighting
function from variations in the measured curvature
of the value function. For instance, when o =0.68,

6=0.77, and ~=0.44 we get c(100, .5) =29.40. A virtu-
ally identical certainty equivalent follows assuming,
for example, o =0.88, 6=0.52, and ~=0.44. Both of
these normalized certainty equivalent functions are
illustrated in Figure A.5. Thus, if one is concerned
with parsing the contribution of subjective value
versus probability weighting on observed risk
attitudes, one must elicit the value and weighting
functions with care. For instance, if one assumes
a single-parameter weighting function (e.g., (W1) or
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FIGURE A.4 Normalized certainty equivalents as a function of
probability assuming the Lattimore and colleagues (1992) weighting
function, with 6=0.77 and ~=0.44 (median values from Gonzalez
and Wu, 1999) and assuming a power value function, with o =0.23
and 0.68 (the range obtained from participants of Gonzalez and Wu,
1999). This figure illustrates the interaction of the value and weight-
ing functions in determining risk attitudes.

(W3B)) when “true” weighting functions vary in
their elevation, one may obtain incorrect measures.
A researcher may believe that a particular pattern
of neural activity covaries with curvature of the
value function, when in fact it covaries with eleva-
tion of the weighting function.'*

Elicitation

Several methods have been proposed for eliciting
value and weighting function parameters. Broadly
speaking these methods fall into four categories:

1. A statistical method that estimates v(x;) and
w(p;) from a participant’s certainty equivalents
for prospects that factorially combine each x;
and p;.

2. Nonparametric methods that separately assess
values then assess decision weights, making no
assumptions concerning the functional form of the
value and weighting functions.

3. Semiparametric methods that assume a
functional form for the value or weighting

FIGURE A.5 Normalized certainty equivalents as a function of
probability assuming the Lattimore and colleagues (1992) weighting
function and power value function with a=0.68, 6=0.77, and
~=0.44 versus o =0.88, 6 =0.52, and ~ = 0.44. This figure illustrates
the difficulty empirically distinguishing between elevation of the
weighting function and curvature of the value function.

function and assess the other function
nonparametrically.

4. Parametric methods that assume a functional form
of both the value and weighting function.

The first three approaches allow for direct estima-
tion of values of specific dollar outcomes and/or
weights of specific probabilities, which can be subse-
quently fit to various parametric forms. The fourth
approach fits parameters directly to choice or pricing
data. We will review each of the most noteworthy
methods in turn then evaluate their respective
strengths and weaknesses.

Statistical Method: Gonzalez and Wu (1999)

Perhaps the most careful elicitation of prospect
theory value and weighting functions to date was
advanced by Gonzalez and Wu (1999). Ten graduate
students in Psychology from the University of
Washington were paid $50 plus an incentive-compatible
payment (contingent on their choices) for their

MGimilarly, misspecification of the curvature of the value function can perturb measurement of loss aversion. For instance, if one
assumes that the value function for gains and losses are identical when in fact the value function is more concave for gains than
losses, then one will generally overestimate the degree of loss aversion (see Nilsson et al., 2011).



APPENDIX

participation in four 1-hour sessions.'” Participants
were presented with 15 two-outcome (non-negative)
gambles crossed with 11 probabilities (=165 gambles),
presented in a random order.

Certainty equivalents were assessed for each gamble
through a series of choices. For instance, consider the
prospect that offered a 50—50 chance of $100 or nothing.
A participant was asked if he preferred to receive the
prospect or various sure amounts that ranged from
$100 to $0 in increments of $20. If a participant indi-
cated that he preferred $40 for sure over the prospect
but preferred the prospect over $20 for sure, then a sec-
ond round of choices would be presented that spanned
this narrower range (from $40 to $20). This process was
repeated until certainty equivalents could be estimated
to the nearest dollar. If, for example, a participant
indicated a preference for a sure $36 over the prospect
but a preference for the prospect over a sure $35, then
the researchers estimated c(100, .5) = 35.5.

The estimation process used by Gonzalez and Wu
(1999) was nonparametric in that it did not make any
assumptions concerning the functional form of v(-)
or w(-). Their algorithm treated the value of each of
the possible outcomes and the weight of each of the
probabilities presented as a parameter to be esti-
mated. These parameters were estimated using an
alternating least squares procedure in which each
step either held w constant and estimated v or held v
constant and estimated w. The authors assert that this
analysis converged on parameter estimates relatively
quickly.

The statistical method of Gonzalez and Wu (1999)
has several advantages over alternative methods.
The elicitation is not very cognitively demanding as
participants are merely required to price two-outcome
gambles. The procedure gives rise to estimates of
values and decision weights that are not distorted
by parametric misspecification. On the other hand,
the procedure is demanding of participants’ time as it
requires pricing of a large number of gambles to get
stable estimates (the original study required partici-
pants to 165 two-outcome gambles, each through a
series of several choices). The procedure has not
yet been applied to the domain of losses or mixed pro-
spects but such an extension would be straightforward.

Nonparametric Methods

Several other fully nonparametric methods have been
advanced for analytically assessing v(-) and w(-). All of
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them rely on a two-stage process in which () is
assessed in a first phase, then applied to the measure-
ment of w(-). The most popular approach to assessing
values that makes no assumptions concerning the
weighting of probabilities is the tradeoff method (Wakker
and Deneffe, 1996). The tradeoff method requires partici-
pants to make choices between two two-outcome pro-
spects (x, p; ) that offer $x with probability p otherwise
$y, with one of the outcomes adjusted following each
choice until indifference between the gambles can be
established. Consider a pair of reference outcomes R >r,
a pair of variable outcomes x; > x,, and a fixed proba-
bility p. On each trial, the values of R, 7, xo, and p are
fixed, and x; is varied until the participant reveals that

(x1,p; 1)~ (x0,p; R). (A.16)

For instance, a participant might be offered a choice
between a 50—50 chance of $100 or $20 versus a 50—50
chance of $70 or $40. If the participant prefers the latter
gamble, then the variable payoff of the first gamble
($100) adjusts to a higher amount (say, $110). The
variable amount can be raised or lowered by decreasing
increments until the participant confirms that both
prospects are equally attractive. Once indifference is
established for this first pair of prospects, the procedure
is repeated for a second pair of prospects with the same
probability and reference outcomes, but a new variable
outcome x, > x;, until it is established that:

(x2, p; 1)~ (x1,p; R). (A17)

According to CPT'®, the first indifference gives us:
o(r) [1 = w(p)] + vGx)w (p) = o(R)1 — w(p)] + v(xo)w(p),
so that
w(p)[v(xy) — v(xp)] = [1 — wp)l[v(R) — v(r)]
and the second indifference gives us
o(N[1 = w(p)] + v(x)w(p) = v(R)[1 — w(p)] + v(xn)w(p),
so that
w(p)lv(xy) — v(xy)] = [1 — wp)l[v(R) — v(n)].

Together these indifferences imply equal value
intervals as follows:

v(x1) — v(xp) = v(x2) — V(x1).

>An incentive-compatible payoff is a payment contingent on choice that encourages honest responses by participants. As discussed
in Chapter 2, economists are generally skeptical of results of studies that do not include such incentives. In practice, the addition of
incentives tends to reduce noise in participant responses and may lead to decreased framing effects and greater risk aversion (for
reviews, see Camerer and Hogarth, 1999; Hertwig and Ortmann, 2001).

16 Assuming x, > R; this result can be relaxed without affecting the result of the elicitation.
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Setting xp =0 and v(xp) =0, we get v(x,) = 2v(xy). By
eliciting similar yoked indifferences to obtain x3, x4, etc.,
we can generate a standard sequence of outcomes that
are spaced equally in subjective value space, allowing us
to construct a parameter-free value function for gains.
A similar exercise can be repeated in the measurement
of the value function for losses (for an example in the
domain of losses, see Fennema and van Assen, 1999).

Once one has obtained a measure of several values
from a participant, one can proceed to measure deci-
sion weights nonparametrically. Arguably the most
popular method, advanced by Abdellaoui (2000), uses
the standard sequence of outcomes xy, ..., x, to elicit a
standard series of probabilities p;, ... , p,—1 that are
equally spaced in terms of their decision weights. This
is done by eliciting probabilities such that a mixture
of the highest and lowest outcome in the standard
sequence is equally attractive to each of the internal
outcomes in that sequence. Thus by establishing for
each x; (=1, ..., n—1) the following indifference:

(X, pis X0)~ X, (A.18)

CPT implies:

o(x;) — v(xo)

o)~ o(x) (A19)

w(p;) =

Because the values of x; were constructed using the
tradeoff method to be equally spaced in terms of their
expected value, the above equation reduces to:

w(p;) =i/n. (A.20)
An analogous procedure can be followed for losses.
Bleichrodt and Pinto (2000) advance a similar two-

step procedure that first relies on the tradeoff method

to elicit a standard sequence of outcomes, then elicits
decision weights through a matching procedure.

Instead of eliciting probabilities that lead to indiffer-

ence between prospects, their method fixes probabili-

ties and elicits outcomes that match pairs of two-
outcome prospects.'” Such a procedure was used to
measure the weighting function for losses by Etchart-

Vincent (2004).

More recently, van de Kuilen and Wakker (2011)
advanced an ingenious method of measuring decision
weights that requires measurement of only a single
utility midpoint (i.e., which monetary outcome is
half-way between a high outcome and low outcome in
terms of its subjective value), using the method of
Wakker and Deneffe (1996) described above. The
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midweight method then estimates individual decision
weights nonparametrically by allocating probability of
obtaining the middle outcome among the high-valued
outcome and the low-valued outcome such that the
value of the prospect remains unchanged. For instance,
if v(x;) is midway between v(x;) and v(x,) and a partic-
ipant is indifferent between receiving x; for sure or a
probability p of receiving x, or else receiving x;, then
we know that w(p) =/ (that is, w™'(//2) = p). Through
a series of chained trials, one can continue to bisect
decision weights to establish a wide range of inverse
decision weights. The midweight method is quite effi-
cient in that it requires a relatively small number of
choices to determine a set of decision weights (and
only a single utility midpoint). It can also be readily
extended from risk to uncertainty. However, it is
extremely cognitively demanding because determining
decision weights beyond the first midpoint requires
participants to choose between pairs of two-outcome
prospects whose probabilities also vary. It is also
worth noting that, in the first demonstration of this
method, van de Kuilen and Wakker (2011) were com-
pelled to drop nearly one-fifth of their respondents
who “apparently did not understand the choices or
did not think about them seriously” and they obtained
a convex shaped weighting function rather than the
customary inverse-S (concave then convex) shape.

The aforementioned nonparametric elicitations can
be used to assess value and weighting functions sep-
arately for gains and losses. Because the value func-
tion is a ratio scale (unique to multiplication by a
positive constant) a separate procedure using mixed
(gain—loss) gambles is required to assess loss aver-
sion. A parameter-free procedure has been advanced
by Abdellaoui and colleagues (2007b). Details of the
procedure are beyond the scope of this chapter, but
the gist is as follows: The first step entails determin-
ing through a series of indifferences between pro-
spects the probabilities p, and p; for which w"(p,)
and w (p;) =2 This allows determination, in a sec-
ond stage, of outcome amounts that are midpoints in
value space for losses. The third step links value for
losses and gains through a series of indifferences that
determines a gain outcome that is the mirror image
of a loss outcome in value space (i.e., has the same
absolute value of utility/value). Finally, the fourth
step repeats the second step by determining out-
comes that are midpoints in value space for gains.
The method of Abdellaoui and colleagues (2007b) is
mathematically elegant and yields clean results con-
sistent with prospect theory in the analysis of aggre-
gate data from a sample of 48 economics students.

7Because the new outcomes may not be included in the standard sequence, this method requires an interpolation procedure and

thus is not fully nonparametric.
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It can also be readily extended to the measurement of
the weighting function by merely eliciting probability
equivalences (Blavatskyy, 2006).'® However, the task
is cognitively demanding, as it relies on choices
between pairs of two-outcome gambles to determine
the crucial values of probabilities that are weighted
at one-half (step one), and it is laborious, as it entails
a complex four-step procedure with disparate
response modes.

Nonparametric methods tend to be less time
consuming than statistical methods of elicitation. Also,
unlike semiparametric and fully parametric methods,
they make no assumptions concerning the functional
form of the value and weighting functions that might
distort measurement, though functions can be fit to
the measured values and weights that are obtained.
Moreover, nonparametric methods preserve a direct
link between specific choices and measured utilities
so that specific inconsistencies can be traced to particu-
lar choices. Unfortunately, nonparametric methods are
generally quite cognitively demanding, requiring
choices between multiple two-outcome prospects (or
even more complicated choices). Thus, these methods
may not give utterly robust measurements as partici-
pants may fall back on decision heuristics (such as
expected value maximization) or respond in an incon-
sistent manner. Moreover, because these methods
generally rely on elicitation of a standard sequence
of values using the tradeoff method, there is the possi-
bility that error in measuring the first step in the
sequence will be propagated throughout the measure-
ment of values and therefore lead to further error
in the measurement of decision weights (however,
studies that have investigated error propagation have
thus far found no large effect; see Bleichrodt and
Pinto, 2000; Abdellaoui et al., 2005).

Semiparametric Methods

Semiparametric elicitation methods assume a
parametric form of the value function in order to derive
nonparametric estimates of decision weights. The sim-
plest semiparametric approach is to assume a power
value function, v(x) = x, as fitted to nonparametric mea-
surement of value using the tradeoff method (or assum-
ing representative parameters from previous studies of
similar participant populations). Next, decision weights
for various probabilities can be determined by eliciting
certainty equivalents c(x, p;) for prospects that pay a
fixed amount x with probabilities p; According to
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prospect theory, c(x, p)® = w(p)x® Thus, each decision
weight is given by:
w(py) = [e(x, p) /" (A.21)

Of course, this method depends on the accuracy of
the first-stage measurement of utility.

A more elegant semiparametric method was recently
advanced by Abdellaoui and colleagues (2008). This
method entails three stages. In the first stage, the value
function for gains is elicited and decision weights are
measured parameters. This is done by eliciting certainty
equivalents G; for a series of prospects (x;, pg Vi)
(x;>y;=0,i=1,..., k). According to CPT:

0(Gi) = vyl — w(pg)] + v(xi)w(ps). (A.22)

Define w(p,) = w' and assume a power value func-
tion v(x) = x*. We get:

Gi = (Wh =y +yM'e. (A.23)

Thus, by varying x; and y; and measuring certainty
equivalents G; the parameters w' and « can be esti-
mated using non-linear regression. An analogous
method can be used in a second stage for the domain
of losses to measure decision weight and power value
function parameters w~ and {. Finally, a third stage
links the value function for gains and losses by selecting
a gain amount G* within the range of values measured
in step one, then determining the loss amount L* such
that a participant finds the mixed prospect (G*, p,; L")
barely acceptable (i.e., is indifferent to playing the
prospect or not). This implies that:

w o(G*) +w” Mo(L*) =v(0) =0, (A.24)
so that one can easily solve for X. Although the method
of Abdellaoui and colleagues (2008) is designed to
elicit value function and loss aversion parameters, it
also provides as a byproduct measurement of a deci-
sion weight. By repeating the procedure for various
probabilities of gain and loss, several decision weights
can be obtained for mapping (or fitting parameters to)
more complete weighting functions.

Semiparametric methods provide a compromise
between accuracy of a nonparametric elicitation
method and the efficiency of a parametric method.
They tend to be less cognitively demanding and less

8That is, the probability p of receiving outcome x, otherwise x, that makes it equally attractive to receiving x; for sure, where v(x,) >

v(x1) > v(xp) are all determined in the first four stages.
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time consuming than pure nonparametric methods
and the statistical method.

Parametric Methods

The final approach to eliciting prospect theory value
and weighting functions is a purely parametric
approach in which functional forms for the value and
weighting function are fitted directly to choice and/or
pricing data. This fitting can be done using a variety
of statistical techniques, from regression to maximum
likelihood estimation (e.g., Stott, 2006) to hierarchical
Bayesian modeling (e.g., Nilsson et al., 2011).

Tversky and Kahneman (1992) elicited certainty
equivalents for a number of single- and two-outcome
prospects entailing pure gains, pure losses, and mixed
outcomes. These were entered into a non-linear regres-
sion assuming a power value function (V1) and single-
parameter weighting function.

A simpler procedure can be executed using Prelec’s
(1998) single-parameter weighting function (W3B) and
a power value function. If we elicit a number of
certainty equivalents c;; for prospects that pay $x; with
probability p;, then we get by prospect theory:

ci = xiexp[ — (Inp)"]. (A.25)

]

Collecting outcomes on the left side of the equation
and taking the double log of both sides, we get:

—In[ — In(c;j/x;)] = In(e) + [ — In(— In p;)].

This equation lends itself to linear regression to
determine the parameters o and ~.

A simple parametric method for measuring loss
aversion was introduced by Tom and colleagues
(2007). This method merely requires participants to
make a series of choices whether or not to accept
mixed prospects that offered a 50—50 chance of gain-
ing $x or losing $y in which x and y were indepen-
dently varied. If one assumes a piecewise linear'
value function (and also w'(5)=w (5)), weight
afforded to gains and losses can be determined
through logistic regression. This method has the
unique advantage of allowing separate measurement
of sensitivity to gains and losses (the regression coeffi-
cients), as well as overall bias to accept or reject gam-
bles (the intercept term).

Most elicitation procedures discussed thus far are
somewhat time-consuming and laborious which makes
it difficult to apply them outside the lab or when there
are severe time constraints in elicitation. Two new
methods have emerged that provide highly efficient

(A.26)
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measurement of prospect theory parameters (though at
the cost of lower resolution or reliability of measure-
ment). In the first, Tanaka and colleagues (2010) pre-
sented participants with three series of paired lotteries.
For each series, participants were asked to indicate
their switching point; that is, the gamble pair where
they would switch preference from option A to option
B. Each combination of the three switching points is
associated with a particular interval for each of the
three preference parameters (curvature, probability
weighting, loss aversion). This method is analogous to
a popular method for eliciting risk aversion para-
meters in an expected utility context (Holt and Laury,
2002). It can be executed in only a few minutes but
yields parameter estimates that are highly coarse.

In the second, Toubia et al. (2013) developed an
adaptive design in which the sequence of choice pro-
blems presented to participants is optimized to maxi-
mize the information content that can be derived from
each choice problem. The information content is mea-
sured in a Bayesian framework, which allows deter-
mining the optimal branching within a universe of
potential choice problems.

Parametric estimation of value and weighting func-
tions has several advantages over other methods.
The task of pricing simple prospects is cognitively
tractable, the time requirements are relatively modest,
and this approach tends to yield reliable measurement.
On the other hand, this approach is susceptible
to parametric misspecification, particularly if one
assumes a single parameter weighting function so that
it is difficult to distinguish the curvature of the value
function from elevation of the weighting function.

Table A.4 summarizes the major methods of pros-
pect theory elicitation, listing strengths and weak-
nesses of each method. All entail tradeoffs, and the
particular method used by researchers will be deter-
mined by the cognitive sophistication of participants,
time constraints, and technical constraints of the study
methodology in question. Table A.4 assesses cognitive
demand in terms of the number of attributes that must
be held in working memory when making each choice
and/or the number of switches that participants must
make between elicitation modes. Thus, the least
demanding methods entail assessing whether or not to
accept a 50-50 gain—loss prospect or choosing
between a two-outcome prospect and a sure thing. The
most demanding methods require choosing between
prospects with more than two outcomes or choosing
between two-outcome prospects that differ in terms of
both outcomes and probabilities. The table also

The assumption of linearity is customary and generally a reasonable first approximation, but need not be assumed if one uses
alternative statistical techniques for fitting other functional forms to the data. The assumption that the weight of one-half is the same
for losses and gains accords reasonably well with the data when it has been carefully tested (see Abdellaoui et al., 2008).
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TABLE A.4 Major Prospect Theory Elicitation Methods
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Method Class Reference Prospect Theory Component(s) Cognitive Demand Time Required
Statistical Gonzalez and Wu (1999) All Low High
Nonparametric Wakker and Deneffe (1996) v"oro” High Medium
Abdellaoui et al. (2007b) v and v~ High Medium
Abdellaoui (2000) w' or w” High Medium
Bleichrodt and Pinto (2000) w' orw” High Medium
van de Kuilen and Wakker (2011) w' orw” Very High Low
Semiparametric Abdellaoui et al. (2008) v, wtorv, wo Medium Medium
Parametric Prelec (1998) v, worv, w Low Medium
Tom et al. (2007) Loss aversion Very Low Medium
Tanaka et al. (2010) v, W Medium Very Low
Toubia et al. (2013) All Very High Very Low

Methods that allow simultaneous measurement of both v* and v~ also permit measurement of loss aversion. Methods that measure v, w (without superscripts)

assume common parameters for losses and gains, also measure loss aversion.

assesses how much time is required for each method
in a typical application. Generally speaking very low
means less than five minutes; low means five to 15
minutes; medium means 15 minutes to one hour, and
high means more than one hour.

Determining Certainty Equivalents

Several elicitation methods discussed above require
determination of certainty equivalents of various pro-
spects. The most straightforward (but cognitively
demanding) method is to elicit them directly by asking
participants for the sure amount of money c that they
find equally attractive to a prospect (x, p). Participants
can be provided incentives for accuracy using the
method described by Becker and colleagues (1964).%°
Alternatively, one might ask participants for the proba-
bility p such they find the prospect (x, p) equally attrac-
tive to the sure amount c. Empirically, such elicitations
tend to be noisy, but they are quick and convenient.

We caution researchers against such direct matching
procedures. Prospect theory was originally articulated
as a model of simple choice between prospects. Direct
elicitation of sure amounts or probabilities to match pro-
spects relies on the assumption of procedure invariance:
two strategically equivalent methods of assessing pref-
erence should lead to the identical orderings between

prospects. Unfortunately, this assumption is routinely
violated. First, people generally afford more weight
to payoffs relative to probabilities when they price pro-
spects than when they choose between them. This can
give rise to preference reversal in which participants price
a low-probability high-payoff bet (for example, a 3/36
chance to win $100) above a high-probability low-pay-
off bet (for example, a 28/36 chance to win $10) even
though they prefer the latter to the former when facing
a simple choice between them (see, for example,
Tversky et al., 1990).?" Second, people tend to be more
risk averse when matching prospects by varying proba-
bility than when matching prospects by varying
outcomes (Hershey and Schoemaker, 1985; see also
Bleichrodt et al., 2001). For instance, suppose that a
participant is asked to report what p of receiving $100
(or else nothing) is equally attractive to receiving $35
for sure, and this participant reports a probability of .5.
If that same participant is asked what certain amount
is equally attractive to a .5 chance of $100, he will gener-
ally report a value greater than $35.

A popular alternative for overcoming limitations
of direct matching procedures is to estimate certainty
equivalents from a series of choices. For instance in
pricing the prospect ($100, .5) that offers a .5 chance
of $100, participants can be offered a series of choices

*’This method is only incentive-compatible if subjects obey the independence axiom (see Chapter 1), which of course is violated in

prospect theory. For a further discussion, see Karni and Safra (1987).

*'For an attempt to accommodate some forms of preference reversal into a version of prospect theory, see Schmidt and colleagues

(2008).
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between ($100, .5) or $100 for sure, ($100, .5) or $90 for
sure, and so forth. For instance, if a participant chooses
$40 for sure over ($100, .5) but she also chooses
($100, .5) over $30 for sure, then by linear interpolation
we can estimate her certainty equivalent as approxi-
mately $35. If a researcher tells participants that a ran-
domly selected choice (from a randomly selected trial)
will be honored for real money, then this method will
be incentive-compatible (i.e., participants will have an
economic incentive to respond honestly).

Sure amounts can be evenly spaced (as in Tversky
and Fox, 1995) or logarithmically spaced (as in
Tversky and Kahneman, 1992). If a researcher wishes
to obtain higher-resolution estimates of certainty
equivalents, the sequential choice method cannot be
readily accomplished in a single round. One approach
is to use an iterated procedure in which a first, coarse
evaluation is made followed by a more detailed series
of choices, etc. (Tversky and Kahneman, 1992; Tversky
and Fox, 1995; Gonzalez and Wu, 1999). For instance,
if a participant prefers $40 to ($100, .5) but $30 to
($100, .5), then four more choices might be presented
between ($100, .05) and $28, $26, $24, $22. Another,
maximally efficient approach is the bisection method in
which each time a choice is made between two pro-
spects (e.g., a risky and sure prospect), one of the out-
comes is adjusted in smaller and smaller increments as
preferences reverse. For instance, if a participant pre-
fers $50 to ($100, .5) then he would be presented a
choice between $25 and ($100, .5). If he prefers the
sure amount this time, then he would be presented a
choice between $37.50 and ($100, .5), and so forth. We
note that unlike single-round elicitations, the multi-
round and bisection approaches to eliciting certainty
equivalents cannot easily be made incentive-
compatible, because if a randomly selected choice is
honored for real money, participants can game the sys-
tem so that a greater number of choices offer higher
sure amounts. Pragmatically, however, this method
remains popular and there is no evidence that partici-
pants engage in such gaming.

Empirical tests indicate that the bisection method
performs much better than direct elicitation of cer-
tainty equivalents (Bostic et al., 1990). Fischer and col-
leagues (1999) note that elicitation of certainty
equivalents through a series of choices will suffer from
some of the problems of direct elicitation when the
goal of determining certainty equivalents is transpar-
ent. This can be obscured by eliciting choices in a stag-
gered order so that each successive choice entails
measurement of the certainty equivalent of a different
prospect. The downside to this approach is that it is
more time consuming than a more straightforward
application of the bisection or sequential choice
method that prices one prospect at a time.

APPENDIX

Modeling Choice Variability

The elicitation methods described thus far have all
assumed a deterministic model of decision under risk.
Naturally, one would not expect choices in practice to
be 100% consistent. At different moments in time, a par-
ticipant may reverse preferences between prospects.
Such reversals may be due to decision errors (for exam-
ple carelessness or lapses in concentration) and/or
transitory variations in the participant’s genuine
underlying  preferences (due, for example,
to emotional, motivational, and cognitive states that
influence risk preference). Reversals in preference are
more likely to occur when the participant has diffi-
culty distinguishing between prospects or has only
weak preferences between them — if a decision maker
is indifferent between prospects g; and g, then one
would expect a 50% chance of reversing preferences
on a subsequent choice between the prospects; the
more strongly g; is preferred to g, the more often we
expect it to be chosen. Such response variability is
typically substantial in studies of risky choice. For
instance, in a survey of eight studies of risky choice,
Stott (2006, Table 1) found a median 23% rate of
reversal in preferences when participants chose
between the same pair of prospects on separate occa-
sions within or across sessions.

There are two distinct approaches to modeling
choice variability. The first is to assume that prefer-
ences are consistent with prospect theory but allow
preferences consistent with that theory to vary from
moment to moment. The random preference approach
assumes that choices reflect a random draw from a
probability distribution over preferences that are con-
sistent with an underlying core theory (see Becker
et al., 1963 for an articulation of such a model under
expected utility and Loomes and Sugden, 1995, for a
generalization). For instance, one could implement
such a model using prospect theory value and weight-
ing functions with variable parameters.

The second approach assumes a deterministic core
theory but allows a specified error distribution to
perturb the participant’s response (see Becker et al.,
1963 for an application to expected utility). Formally,
let f(g1, §») be the relative frequency with which pros-
pect g1 is selected over prospect g, in a pairwise
choice. Decisions are assumed to be stochastically
independent from one another and symmetric so that
(g1, §2) =1 —f(g2, §1)- Let V(g;) be the prospect theory
value of prospect g;. Most response variability models
assume that f(g1, g») increases monotonically with
V(g1) — V(go), the difference in prospect theory value
of prospects 1 and 2.

The choice function f() can take several forms (see
Stott, 2006, Table 4). First, it can manifest itself as a
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constant error function in which there is a fixed probabil-
ity of expressing one’s true preference. Thus,
f(g1, g2) =< whenever V(¢1) <V(g2), f(g1, g2) = /2 when-
ever V(g1)=V(g), and f(g1, §)=1—¢ whenever
V(g1) > V(g2), where 0=e='/% Second, choice fre-
quency might depend on the difference in prospect
theory value between prospects, either following a
probit transformation (e.g., Hey and Orme, 1994) or
a logit transformation (e.g., Carbone and Hey, 2000).
Thus, for the probit transformation,

f(81,82) = P[V(g1) = V(82), 0, o]

where ®[x, p, o] is the cumulative normal distribution
with mean p and standard deviation ¢ at point x.
Third, the choice function might follow a Luce (1959)
choice rule in which choice frequency depends on the
ratio of prospect theory values of the prospects:

V(g1)"
V(g1) +V(g2)"

In an empirical test of several stochastic models
assuming expected utility compliant behavior, Loomes
and Sugden (1998) found that the random preference
model tended to under-predict observed violations of
dominance, and the error model assuming a probit
transformation tended to over-predict such violations.
The constant error form performed poorly.

The most comprehensive test to date of various
choice functions and prospect theory value and weight-
ing functional forms was reported by Stott (2006), who
tested various combinations, including most of those
described in this chapter. In his test, the model with
the greatest explanatory power (adjusted for degrees
of freedom) relied on a power value function (V1),
a Prelec (1998) one-parameter weighting function (W3B)
and a logit function. However, for reasons mentioned,
we recommend use of a two-parameter weighting func-
tion (W2).

(A.27)

f(81.82) = (A.28)

Reliability of Measured Parameters

Many applications of prospect theory parameter
measurement rely on the assumption that measured
parameters reflect stable individual differences. To
date there have been surprisingly few empirical tests
of this assumption, and the results have been mixed.
Baucells and Villasis (2010) asked MBA students to
complete a series of risky choices on two occasions
three months apart. In particular, they observed the
reflection effect (risk aversion for gains coupled with
risk seeking for losses) among a majority of partici-
pants during both time periods, but considerable vari-
ation among individual participants” responses from
one occasion to the next. However, when fitting the
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data to a stochastic choice model, an underlying reflec-
tion effect was documented among 72% of partici-
pants. In a related vein, Zeisberger and colleagues
(2012) elicited prospect theory parameters from under-
graduate students on two occasions one month apart.
They found that while parameters were stable on the
aggregate level, approximately one-sixth of partici-
pants exhibited significantly different parameters for
the two administrations in the domain of gains and
more than one-third of participants exhibited such
parameter instability in the domain of losses. Using a
similar design, Glockner and Pachur (2012) elicited
prospect theory parameter sets among undergraduate
students during two sessions one week apart. Results
indicated moderately high stability of individual dif-
ferences in parameters across sessions, especially when
using single-parameter weighting functions. Moreover,
allowing for individual differences in CPT parameters
measured at time 1 (time 2) yielded significantly better
prediction of choices at time 2 (time 1) than did the
median parameter estimate. While these results are
encouraging, a study by Erner and colleagues (2013)
carefully measured prospect theory parameters among
business students, finding that they did a poor job pre-
dicting participants’” preferences among prospects
designed to mimic the profits of various financial pro-
ducts (e.g., binary call and put options). Taken
together we conclude that measured prospect theory
parameters reflect individual differences that are mod-
estly stable, but more predictive of preferences among
simple gambles than of more complex prospects.

NEUROSCIENTIFIC DATA

There has been substantial progress in understand-
ing the neural correlates of prospect theory in recent
years (for an early review, see Trepel et al., 2005).
Below, the chapter first outlines some challenges to
effective characterization of the relation between neu-
ral activity and theoretical quantities, and then reviews
recent work that has characterized the brain systems
involved in various components of prospect theory.

Paradigmatic Challenges

Integrating theories from behavioral decision-
making research with neuroscientific evidence has
posed a number of challenges to researchers in both
fields.

Developing Clean Comparisons

As developed in Chapter 6, a neuroimaging study is
only as good as its task design. In particular, it is
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critical that tasks cleanly manipulate particular theoret-
ical quantities or components. For example, a study
designed to examine the nature of probability weight-
ing must ensure that the manipulation of probability
does not also affect value. Because it is often impossi-
ble to cleanly isolate quantities in this way using any
specific task, another alterative is to vary multiple
quantities simultaneously and then model these
manipulations parametrically. This allows the response
to each quantity to be separately estimated. For exam-
ple, as noted in Chapter 9, Preuschoff and colleagues
(2006) manipulated both expected reward and risk in a
gambling task, and were able to demonstrate different
regions showing parametric responses to each variable.
A further challenge is that tasks that adequately isolate
specific cognitive components may sacrifice their rele-
vance to real-world decision-making, and thus provide
decreased external validity to naturalistic decision
making (Schonberg et al., 2011). Addressing this chal-
lenge will require the development of tasks that retain
the excitement of real-world risk-taking experiences
while still allowing clear cognitive decomposition.

Isolating Task Components

One of the most difficult challenges of fMRI is the
development of task paradigms and analytic
approaches that allow isolation of specific task compo-
nents. For example, in tasks where subjects make a
decision and then receive an outcome, it is desirable to
be able to separately estimate the evoked response
to the decision and to the outcome. Because the fMRI
signal provides a delayed and smeared representation
of the underlying neuronal activity, the evoked
response lags the mental event by several seconds.
A number of earlier studies used an approach where
specific timepoints following a particular component
are assigned to that component; however, this
approach is not a reliable way to isolate trial compo-
nents, as it will provide at best a weighted average of
nearby events (Zarahn, 2000). It is possible to model
the individual components using the general linear
model, but the regressors that model the different
components are often highly correlated, resulting
in inflated variance. One solution to this problem
involves the use of random-length intervals between
trial components; this serves to decorrelate the model
regressors for each task component and allows more
robust estimation of these responses (e.g., Aron et al.,
2004), but it can also fundamentally change the nature
of the task (Klein-Fliigge et al., 2011).

Inferring Mental States from Neural Data

It is very common in the neuroeconomics literature
to infer the engagement of particular mental states
from neuroimaging data. For example, Greene and
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colleagues (2001) found that moral decision making for
“personal” moral dilemmas was associated with
greater activity in a number of regions associated with
emotion (for example the medial frontal gyrus) com-
pared to “impersonal” moral dilemmas. On the basis
of these results, they concluded that the difference
between these tasks lies in the engagement of emotion
when reasoning about the personal dilemmas. In a
widely read and influential paper, Poldrack (2006)
referred to this approach as reverse inference, and
showed that its usefulness is limited by the selectivity
of the activation in question. That is, if the specific
regions in question only activate for the cognitive pro-
cess of interest, then reverse inference may be rela-
tively powerful; however, there is little evidence for
strong selectivity in current neuroimaging studies, and
this strategy should thus be used with caution. For
example, ventral striatal activity is often taken to imply
that the subject is experiencing reward, but activity in
this region has also been found for aversive stimuli
(Becerra et al., 2001) and novel non-rewarding stimuli
(Berns et al., 1997), suggesting that this reverse infer-
ence may not be well founded. A formal analysis of
reverse inference using the BrainMap database showed
that ventral striatal activity did provide relatively good
evidence in favor of the presence of reward (Ariely
and Berns, 2010). An analysis of a ventral striatal loca-
tion (MNI coordinates: —8,0,—12) wusing the
Neurosynth.org tool (Yarkoni et al., 2011) showed that
the term “reward” had a fairly high likelihood (.8) of
appearing in the paper given activation in that location
(a reverse inference) but that there were a number of
terms with stronger reverse inference probabilities,
including “incentive,” “odor,” “trauma,” and “losses.”
These results suggest continued caution in the use of
reverse inference.

Value Function

Before reviewing papers that purport to examine
neurophysiological correlates of the prospect theory
value function we pause to distinguish different varie-
ties of utility, a discussion which formed the core of
Chapters 1 and 9. Recall that traditionally, the utility
construct in neoclassical economics refers to a hypo-
thetical function that cannot be directly observed map-
ping states of wealth to numbers; a decision-maker
whose choices adhere to the four axioms reviewed in
Chapter 1 can be represented as maximizing expected
utility. Thus, utility is a mathematical construct that
may or may not reflect mental states of decision
makers.

Although prospect theory also has an axiomatic
foundation (Wakker and Tversky, 1993), the model
is motivated by behavioral phenomena, such as the
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psychophysics of diminishing sensitivity, that are
assumed to correspond to mental states of decision
makers. However, it is important to distinguish differ-
ent varieties of utility when using tools of neuroscience
to interpret mental states of a decision maker, again,
an issue that forms the core of Chapter 9’s discussion
of risk. In particular, “utility” in the context of making
a decision may not be the same thing as “utility” in
the context of experiencing or anticipating the receipt
of an outcome. Economists have focused primarily on
a measure of what Kahneman and colleagues (1997)
call decision utility, which is the weight of potential out-
comes in decisions. However, as these authors point
out, the original concepts of utility from Bentham and
others focused on the immediate experience of plea-
sure and pain, which they refer to as experienced utility.
Others have highlighted the importance of the utility
related to anticipating a positive or negative outcome
(e.g., Loewenstein, 1987), referred to as anticipation
utility. These are critical issues which form the subject
of Chapter 18. Of particular interest is the fact that
these different forms of utility can be dissociated; for
example, individuals may make decisions that serve
to decrease their experienced or anticipation utility.
In order to be able to clearly interpret the results of
neuroimaging studies, it is thus critical to distinguish
between these different forms of utility. The distinc-
tion between different forms of utility in behavioral
decision theory parallels the distinction between
“wanting” and “liking” that has developed in the ani-
mal literature and reviewed in Chapter 18 (see also
Berridge, 2007).

Because it is most directly relevant to the prospect
theory value function, we focus here on decision utility.
This is the value signal that is most directly involved
in making choices, particularly when there is no imme-
diate outcome of the decision, as in purchasing a stock
or lottery ticket. This concept has received significant
interest in recent years, and there is now convergent
evidence for the role of ventromedial prefrontal cortex
in representation of decision value, a conclusion devel-
oped in Chapters 8, 13, 21, and particularly 20. In one
of the most important of the studies that led to this
conclusion, Tom and colleagues (2007) imaged subjects
during a gamble acceptability paradigm, in which
subjects decided whether to accept or reject mixed
gambles offering a 50% chance of gain and 50% chance
of loss. The size of the gain and loss were varied para-
metrically across trials, with gains ranging from $10 to
$40 (in $2-increments) and losses from $5 to $20 (in $1-
increments). Subjects received an endowment in a sep-
arate session one week before scanning in order to
encourage integration of the endowment into their
assets and prevent the risk-seeking associated with
house money effects (Thaler and Johnson, 1990).
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Subjects exhibited loss-averse decision behavior, with a
median loss aversion parameter X =1.93 (range: 0.99 to
6.75). Parametric analyses examined activation in rela-
tion to gain and loss magnitude. A network of regions
(including ventral and dorsal striatum, ventromedial
and ventrolateral PFC, ACC, and dopaminergic mid-
brain regions) showed increasing activity as potential
gain increased. Strikingly, no regions showed increas-
ing activity as potential loss increased (even using
weak thresholds in targeted regions including amyg-
dala and insula). Instead, a number of regions showed
decreasing activation as losses increased, and these
regions overlapped with the regions whose activity
increased for increasing gains. This finding of decreas-
ing VMPFC activity for increasing losses has been rep-
licated in several other studies (e.g., Cunningham
et al., 2009; Plassmann et al., 2010); none of these stud-
ies have reported increased activity in regions such as
insula or amygdala that are usually associated with
negative outcomes.

The Tom and colleagues (2007) study further char-
acterized the neural basis of loss aversion by first
showing that a number of regions (including ventral
striatum) showed what might be interpreted as neural
loss aversion, meaning that the decrease in activity for
losses was steeper than the increase in activity for
gains. Using whole-brain maps of these neural loss
aversion parameters, they found that behavioral loss
aversion was highly correlated across individuals with
neural loss aversion in a number of regions including
ventral striatum and ventrolateral PFC. These data are
strongly consistent with prospect theory’s proposal of
a value function with steeper slope for losses than
gains. To our knowledge, no other published studies
have directly attempted to replicate this analysis.

A number of studies have examined decision utility
using a willingness-to-pay (WTP) paradigm in which
subjects place bids for a number of ordinary food
items in a Becker—DeGroot—Marschak (BDM) auction,
which ensures that subjects’ choices are an accurate
reflection of their preferences. Plassmann and collea-
gues (2007) compared free-bid trials, in which subjects
decided how much to bid on the item, with forced-bid
trials in which subjects were told how much to bid.
They found that activity in ventromedial and dorsolat-
eral PFC was correlated with WTP in the free bid trials
but not the forced bid trials, suggesting that these
regions are particularly involved in coding for decision
utility. Subsequent work using WTP paradigms has
confirmed that the ventromedial PFC encodes decision
utility across a broad range of goods (see for example
Chib et al., 2009), suggesting that it serves as a final
common pathway for value representation.

As noted in the first edition of this book, “Further
work is necessary to better understand the amygdala’s
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role in decision making,” and indeed a number of
studies have addressed this issue since the first
edition, but the question still remains. Particularly pro-
vocative are the findings of De Martino and colleagues
(2010), who found that two patients with amygdala
damage due to Urbach—Wiethe syndrome did not
exhibit loss aversion, suggesting in contrast to the
imaging results that the amygdala is necessary for loss
aversion. They suggest that this may have reflected the
overall positive range of values for the decisions pre-
sented in the Tom and colleagues study; however, it is
also possible that the differences reflect the fact that
fMRI is sensitive to postsynaptic signals, and that the
inputs to amygdala do not provide sufficient discrimi-
nation between different values. A recent study by
Jenison and colleagues (2011) provides evidence con-
sistent with this possibility. Amygdala neurons were
directly recorded in three patients; of the 16 neurons
whose spike rate correlated with WTP, nine showed a
negative correlation, and seven showed a positive cor-
relation. Thus, these neurons may cancel each other
out in a parametric model, resulting in a lack of differ-
ential fMRI signals for gains and losses in spite of its
importance. This work highlights the importance of
lesion and neurophysiological studies alongside neuro-
imaging, given the clear limitations of each technique.

Probability Weighting Distortions

A number of studies have attempted to identify
neural correlates of distortions in probability weighting.
Paulus and Frank (2006) used a certainty equivalent
paradigm in which subjects chose between a gamble
and a sure outcome on each trial; the gamble was
altered on successive trials to estimate the certainty
equivalent. Nonlinearity of the probability weighting
function was estimated using the Prelec (1998) weight-
ing function. Regression of activation for high versus
low probability prospects showed that activity in the
ACC was correlated with the nonlinearity parameter,
such that subjects with more ACC activity for high ver-
sus low prospects were associated with less nonlinear
weighting of probabilities.

Nonlinearities in probability weighting were also
examined by Hsu and colleagues (2009). Subjects chose
between pairs of simple gambles, which varied in mag-
nitude and probability; on each trial, each gamble is first
presented individually, then they are presented together
and the subject chooses between them. Weighting func-
tion nonlinearity was estimated using the Prelec (1998)
weighting function. In order to isolate regions exhibiting
nonlinear responses with probability, separate regressors
were created which modeled a linear response with
p and a deflection from that linear function which
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represents nonlinear effects. Significant correlations with
both linear and nonlinear regressors were found in sev-
eral regions, including the dorsal striatum. Further anal-
ysis of individual differences showed a significant
correlation between behavioral nonlinearity and nonline-
arity of striatal response across subjects.

Probability weighting distortion for aversive out-
comes was examined by Berns and colleagues (2007).
In a first phase, subjects passively viewed prospects
which specified the magnitude and probability of an
electric shock. In a second phase, subject chose
between pairs of lotteries. A quantity was estimated
(a mneurological probability response ratio or NPRR)
which indexed the response to a lottery with proba-
bility less than one to a lottery with a probability of
one (normalized by respect to the response to proba-
bility /3, which is the sampled point nearest to the
likely intersection of the nonlinear weighting func-
tion and linear weighting function). For the passive
phase, the NPRR was found to be significantly non-
linear for most regions examined, including regions
in the dorsal striatum, prefrontal cortex, insula, and
ACC. Activity from the passive phase was also used
to predict choices during the choice phase; the fMRI
signals provided significant predictive power, partic-
ularly for lotteries that were near the indifference
point. Thus, there appears to be fairly widescale
overweighting of low probability aversive events in a
number of brain regions.

A recent study used positron emission tomography
(PET, see Chapter 6 for details on this technique) to mea-
sure the relation between dopamine D; receptor binding
and probability weighting distortions (Takahashi et al.,
2010; see Chapter 14 for more about these dopaminergic
effects). They found that nonlinearity of the weighting
function was associated with D; receptor density in the
striatum, such that subjects with lower D; receptor
densities as measured with PET showed a greater degree
of nonlinearity. This result is potentially consistent
with the foregoing studies; although the Takahashi study
did not find an effect outside the striatum, the levels
of D; receptor expression are much lower outside the
striatum and thus the sensitivity to effects in those
regions is much lower.

Although the results of these studies are prelimi-
nary and not completely consistent, they suggest that
it should be possible to identify the neural correlates of
probability weighting distortions and to resolve these
issues in the near future. It will be important to deter-
mine which regions are causally involved in these
distortions (as opposed to simply reflecting the
distortions) by testing subjects with brain lesions or
other neurological disorders for behavioral effects on
probability representations. If nonlinearities are the
product of a specific brain system, then it should be
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possible to find subjects whose choices are rendered
linear with probability following specific lesions, simi-
lar to findings that ventromedial prefrontal cortex
(vinPFC) lesions result in more advantageous behavior
in risky choice (Shiv et al., 2005). It would also be use-
ful to test the effects of pharmacological manipulations
of the dopamine system, to confirm the role suggested
by the Takahashi and colleagues (2010) results.

Reference-Dependence and Framing Effects

The neural correlates of reference-dependence in
decision making have been examined in several studies,
but the upshot of these results are currently unclear. De
Martino and colleagues (2006) manipulated framing in a
decision task (discussed in detail in Chapter 24)
in which subjects chose between a sure outcome and
a gamble after receiving an initial endowment on each
trial; gambles were not resolved during scanning.
Framing was manipulated by offering subjects to choose
between a sure loss and a gamble (for example: lose £30
versus gamble) or a sure win and a gamble (for exam-
ple: keep £20 versus gamble). Subjects showed the stan-
dard behavioral pattern of risk-seeking in the loss frame
and risk aversion in the gain frame, with substantial
individual variability. Amygdala activity was associated
with the dominant choices, with increased activity for
sure choices in the gain frame and risky choices in the
loss frame; the dorsal ACC showed an opposite pattern
across conditions. Individual differences in behavioral
framing-related bias were correlated with framing-
related activation in orbitofrontal and medial prefrontal
cortex; that is, subjects who showed less framing bias
(and thus behaved more “rationally” in the technical
sense) showed more activity for sure choices in the gain
frame and risky choices in the loss frame compared to
the other two conditions. Thus, whereas amygdala
showed the framing-related pattern across all subjects
on average, in the OFC this pattern was seen increas-
ingly for subjects who showed less of a behavioral fram-
ing effect. This finding has been replicated by Roiser
and colleagues (2009), who further showed that the
effect was modulated by a polymorphism in the seroto-
nin transporter gene. Although amygdala activation is
often associated with negative outcomes, it has also been
associated with positive outcomes (Weller et al., 2007),
and the correlation of amygdala activity with choice in
the De Martino and Roiser studies is consistent with
coding of value in the amygdala.

The interpretation of the foregoing results is compli-
cated, however, by a recent study of framing effects
using the same task in patients with bilateral amygdala
lesions. Talmi and colleagues (2010) found that these
patients showed intact framing effects, contrary to the
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prediction of the neuroimaging studies. This result
suggests that while the amygdala may be modulated
by framing effects, it is likely not the region that is
causing these effects.

Two other studies have examined reference depen-
dence by comparing buying versus selling of similar
objects. Knutson and colleagues (2008) found that the
overall product preference was associated with activa-
tion in the ventral striatum, whereas vmPFC showed
an interaction between buy/sell condition and price,
as expected if it is coding for decision value. This
study also found that individual differences in the
size of the endowment effect were associated with acti-
vation in the insula, but only for activation to highly
preferred items in the sell condition. While interesting,
there is some concern that the analytic flexibility
allowed by computing correlations for each sub-
condition may result in increased false positive rates
(Simmons et al., 2011). In addition, this study did pres-
ent the same items within both sell and buy conditions
to each individual, and thus endowment effects were
imputed rather than measured directly.

The neural basis of endowment effects was also
examined by De Martino and colleagues (2009), who
directly compared WTP and willingness to accept
(WTA) for the same goods within subjects. They repli-
cated the common finding of a correlation between
WTP and VMPFC activation, whereas WTA on sell
trials was associated with activation in a lateral orbito-
frontal region. Both the bilateral striatum and insula
showed a pattern indicative of the endowment effect
(the difference between WTP/WTA and subjective
expected value); the striatum showed this effect for
both selling and buying, while the insula only on buy
trials. In this study, individual differences in endow-
ment effects (i.e., WTA — WTP) were correlated with
striatal activity, both within subjects (across trials) and
between subjects.

In summary, the neural basis of reference depen-
dence and framing remains unclear, with different
studies finding different regions (and sometimes the
same region showing different effects). Further work is
necessary to clarify the neural correlates and substrates
of reference dependence. More detail on these issues
can be found in Chapter 24.

CONCLUSIONS AND FUTURE
DIRECTIONS

The field of neuroeconomics is providing a rapidly
increasing amount of data regarding the phenomena
that lie at the heart of prospect theory, such as framing
effects and loss aversion. But one might ask: what
have these data told us about prospect theory? It is
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clear from the demonstrations of neural correlates of
several of the fundamental behavioral phenomena
underlying prospect theory (loss aversion, framing
effects, and probability weighting distortions) that
there is now mechanistic evidence for many of these
violations of rationality which support pre-existing
behavioral evidence. Our review of behavioral and
neuroscience work on prospect theory and the neuro-
science of behavioral decision making suggests a num-
ber of points of caution, however, for future studies of
decision making in the brain:

1. It may be critical to distinguish between the
different varieties of utility in designing and
interpreting neuroscience studies, and this is
particularly important when choosers are
technically inconsistent — a point made in
Chapter 8. Studies in which participants make
a decision and then receive an immediate
outcome may be unable to disentangle the
complex combination of what Kahneman and
colleagues (1997) have called decision,
anticipated, and experienced utilities (see also
Chapter 18) that are likely to be in play in such
a task.

2. Under prospect theory, risk attitudes toward
different kinds of prospects are interpreted in
different ways. Risk aversion for mixed gambles is
attributed to loss aversion; the fourfold pattern of
risk attitudes for pure gain or loss gambles is
attributed to diminishing sensitivity both to money
(as reflected by curvature of the value function) and
probability (as reflected by the inverse-S-shaped
weighting function). It is easy to conflate these
factors empirically; for instance, if one assumes a
single-parameter weighting function that only
allows variation in curvature but not elevation, then
variations in observed risk attitudes across all
probability levels may be misattributed to curvature
of the value function.

3. Reverse inference (the inference of mental states
from brain imaging data) should be used with
extreme care. As a means for generating hypotheses
it can be very useful, but its severe limitations
should always be recognized (for more on this, see
Poldrack, 2011).

Challenges for the Future

In the first edition of this book, the prospect theory
chapter argued that: “As neuroeconomics charges for-
ward, we see a number of important challenges for
our understanding of the neurobiology of prospect the-
ory.” Several years later, each of these challenges
remains, though progress has been made on each.
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First, there is a need to better understand the rela-
tions between different varieties of utility, both individ-
ually and in combination. This will require clever new
approaches to experimental design in order to separate
these entities. Second, it is critical that neuroimaging
studies are integrated with studies of neuropsychologi-
cal patients in order to determine not just which
regions are correlated with particular theoretical phe-
nomena, but also whether those regions are necessary
for the presence of the phenomena. A nice example of
this combined approach was seen in the study of ambi-
guity aversion by Hsu and colleagues (2005). It is likely
that many of the regions whose activity is correlated
with theoretical quantities (like curvature of the weight-
ing function) may be effects rather than causes of the
behavioral phenomena, a point highlighted by recent
findings in which results from lesion studies diverged
from imaging results (De Martino et al., 2009; Talmi
et al, 2010). In addition, neurophysiological studies
(where possible) can provide additional evidence
regarding the nature of neural representations, as seen
in the recent work by Jenison and colleagues (2011).

Another challenge comes in understanding the func-
tion of complex neural structures such as the ventral
striatum and amygdala in decision making. Each of
these regions is physiologically heterogeneous, but the
resolution of current imaging techniques leads them to
be treated as singular entities. In the amygdala the het-
erogeneous nuclei are large enough that they could
potentially be differentiated using currently available
neuroimaging methods (as in Etkin et al., 2004), but lit-
tle work has examined this distinction. The neurobio-
logical heterogeneity of the ventral striatum is more
difficult to address using current neuroimaging meth-
ods; there are both structural features that are not cur-
rently visible to human neuroimaging (accumbens core
versus accumbens shell) as well as substantial cellular
heterogeneity (striosomes versus matrix, direct versus
indirect pathway) at an even finer grain. Finally, there
is still substantial controversy over the degree to which
imaging signals in the ventral striatum reflect dopa-
mine release as opposed to excitatory inputs or inter-
neuron activity. It is clear that imaging signals in the
ventral striatum often exhibit activity that parallels the
known patterns of dopamine neuron firing (in particu-
lar, prediction error signals), and dopamine has strong
vascular as well as neuronal effects, so it is likely that
it exerts powerful effects on imaging signals, but it is
not currently known how to disentangle these effects
from local neuronal effects. As an added complication,
recent work has suggested that signals correlated with
prediction error in the ventral striatum may reflect
action-related signals rather than the pure prediction
error signals that are coded by DA neurons (Klein-
Fliigge et al., 2011). The use of voltammetry techniques



APPENDIX

563

BOX A.1

Let S be the set whose elements are interpreted as states
of the world, with subsets of S called events. Thus, S is the
certain event and ¢ is the null event. A weighting function
W (on S), also called a capacity, is a mapping that assigns
to each event in S a number between 0 and 1 such that
W($) =0, W(S) =1 and W(A) = W(B) if and only if A= B.

Let X be a set of consequences, also called outcomes,
that also includes a neutral outcome 0. An uncertain
prospect f is a function from S into X that assigns to
each event A; a consequence x;. Assume that the conse-
quences are ordered by magnitude so that x;>x; if and
only if i >j. Cumulative prospect theory separates pro-
spects into a positive part, f*, that includes all x;>0,
and a negative part, f, that includes all x;<0. CPT
assumes a strictly increasing value function v(x) satisfy-
ing v(xp) =v(0) =0.

CPT assigns to each prospect f a number V(f) such that
f=g if and only if V(f) = V(g). Consider prospect f = (x;, A),
—m=i=n, in which positive (negative) subscripts refer to

FORMAL PRESENTATION OF CUMULATIVE PROSPECT THEORY
(Adapted from Twversky and Kahneman, 1992)

positive (negative) outcomes and decision weights
() =(g,....m ) and 7~ (f7) = (7 ,,,..., ) for gains
and losses, respectively. The value V of the prospect is
given by

V=V + V().

where

n 0
V()= wfotx), and V(F) = > m o(x),
i=1

where n* and =~ are defined as follows:
o =WT(Ay), 72, = W (A_y)
= WHAU.. U A) - W (A U ... UAY),
for O=i=n—1,
=W (A ,U...0A)-W (A, uU...UA ),
for 1-m=i=<0.

to directly measure dopamine release, while challeng-
ing in humans (Kishida et al., 2011), may represent the
best approach to directly understand the role of dopa-
mine in these functions.

Finally, one critical extension of present work will be
to relate it to other work in the domain of cognitive con-
trol. The role of frontal and basal ganglia regions in
the control of cognitive processes (including inhibition,
selection, and interference resolution) is becoming
increasingly well specified, but how these processes
relate to decision has only recently begun to be explored.
Recent work using transcranial magnetic stimulation (see
Chapter 6) has shown that disruption of prefrontal corti-
cal regions can directly modulate decision processes (e.
g, Figner et al., 2010), which suggests that this will con-
tinue to be a powerful approach to identify the role of
prefrontal control systems in decision making.
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