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Abstract 
 

In this paper we document two systematic anomalies in relative and absolute likelihood 

judgment.  First, we provide examples in which event A is judged “more likely” than event B 

but event B is assigned a higher probability than event A, violating procedure invariance.  

Second, we provide examples in which event A is judged more likely to occur than event B 

while event not-A is also judged more likely than event not-B, violating ordinal 

complementarity.  We attribute these “belief reversals” to the complement neglect hypothesis: 

evidence for complementary events is underweighted in relative but not absolute likelihood 

judgment.  We advance the “Contingent Weighting of Support” (CWS) model in which support 

theory is embedded within the contingent weighting model, and derive conditions under which 

each kind of belief reversal is expected to occur.  We then fit this model to data in two 

experiments, and provide direct evidence of complement neglect in relative but not absolute 

likelihood judgment.   
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The Construction of Absolute and Relative Belief 

 
 
1. Introduction. 
 
 People are frequently called on to evaluate the relative likelihood of events.  For 

instance, an investor might assess which of several mutual funds has the best chance of 

outperforming the market; a doctor might be asked which of three treatment options is most 

likely to cure a disease; a prospective buyer might wonder which of two car models is less 

likely to break down.  Whether we infer a person’s belief from his or her choices, explicit 

probability estimates, or verbal statements that qualify belief (e.g., “It is fairly likely that…”), 

we rely on several implicit assumptions to derive consensual meaning from these data.  Among 

the most basic assumptions is procedure invariance: the belief ordering of two events, A and B, 

should coincide under normatively equivalent elicitation modes.  Thus, absolute and relative 

expressions of belief should be consistent with one another.  For instance, when a weather 

forecaster says she thinks there is a 70% chance of rain tomorrow in Seattle and a 40% chance 

of rain tomorrow in Los Angeles, we assume that she would also say that she thinks it is “more 

likely” to rain tomorrow in Seattle than Los Angeles.  Second, the ordering of beliefs of any 

pair of events should be the reverse of the ordering of their complements, an assumption that 

we label ordinal complementarity.  Thus, we expect the forecaster to say she thinks it is more 

likely to rain in Atlanta than Boston if and only if she would also say that it is more likely to 

remain dry in Boston than Atlanta.   

The assumptions of procedure invariance and ordinal complementarity seem to be 

unassailable, if not tautological. In fact, axiomatic treatments of subjective probability do not 

typically distinguish between absolute and relative likelihood judgment, and they take ordinal 
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complementarity for granted (Fishburn, 1986; Krantz, Luce, Suppes & Tversky, 1971). 2  

However, as we will demonstrate, both assumptions can fail in systematic and predictable 

ways. These violations provide important clues about how people weight evidence when 

making absolute and relative likelihood judgments. In this paper we document several 

examples of violations of procedure invariance and ordinal complementarity, develop a model 

of belief construction that accommodates them, fit this model and measure its parameters.  To 

do so we embed support theory (Tversky& Koehler, 1994; Rottenstreich & Tversky, 1997) 

within the contingent weighting model (Tversky, Sattath & Slovic & 1988) to develop a new 

model that characterizes the construction of absolute and relative likelihood judgment. 

The psychology of likelihood judgment. 

Research on heuristics and biases (Tversky & Kahneman, 1974; Kahneman, Slovic & 

Tversky, 1982; Gilovich, Griffin & Kahneman, 2002; Shah & Oppenheimer, 2008) asserts that 

people judge the relative likelihood of events by evaluating a substitute attribute such as the 

relative ease with which instances of each event come to mind or the relative similarity of each 

event to a relevant prototype (Frederick & Kahneman, 2002; Kahneman, 2003).  For instance, a 

person may judge the likelihood of rain to be greater in Seattle than in Los Angeles because 

recent instances of rain are easier to recall in Seattle than Los Angeles.   

Although studies of judgmental heuristics have been useful in predicting and explaining 

relative likelihood judgment, they do not explain how people quantify or qualify their absolute 

                                                             
2For instance, in Fishburn’s (1986) review of the axioms of subjective probability he sets up a system of axioms 
defined using the > operator so that A > B is read as “event A is (regarded by the individual as) more probable 
than event B,” but he does not explicitly distinguish absolute from relative probability judgment.  Fishburn does 
explicitly advance ordinal complementarity as an axiom that he says “might quality [as] …so obvious and 
uncontroversial as to occasion no serious criticism” (p. 336).  Likewise, Krantz, Luce, Suppes & Tversky (1971) 
define the “≥” operator as “qualitatively at least as probable as” and defer “debates about the meaning of 
probability” as being “in reality, about acceptable empirical methods to determine ≥” (p. 200).  They later 
articulate ordinal complementarity as Lemma 4 that follows from other axioms that are necessary for a 
representation of qualitative probability (see pp. 203, 212). 
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degree of belief, which is required for many choices. For instance, the decision whether or not 

to carry an umbrella requires one to assess how likely it is to rain today; the decision whether 

or not to purchase an insurance policy requires one to estimate how likely one is to make a 

claim; the decision whether or not to accept a legal settlement offer requires one to estimate 

how likely one is to prevail in court. 

To model absolute likelihood judgment, support theory (Tversky & Koehler, 1994; 

Rottenstreich & Tversky, 1997) distinguishes between events and descriptions of events, called 

“hypotheses.”3  Support theory conceives of probability as a judgment of the proportion of 

evidence favoring a focal hypothesis (e.g., “rain in Seattle next Tuesday”) relative to its 

complement (“no rain in Seattle next Tuesday”).  People may recruit evidence for focal and 

complementary hypotheses using judgmental heuristics, explicit arguments, or objective data.  

For instance, the probability of rain in Seattle might be estimated by comparing the ease with 

which one can imagine a day with rain to the ease with which one can imagine a day without 

rain.  If the former is equally easy as the latter then the probability might be estimated as ½ 

(i.e., odds of 1:1).  

In support theory evidence for the focal hypothesis and evidence for the complementary 

hypothesis receive equal weight in probability judgment.  In contrast, research on heuristics 

such as availability and representativeness suggests that judgment of relative likelihood (e.g., 

“where is it more likely to rain?”) can be assessed by comparing evidence for each focal 

hypothesis (e.g., “rain” in Seattle versus “rain” in Los Angeles) without reference to 

corresponding complementary hypotheses (days without rain in Seattle/Los Angeles), though 

this research does not mention explicitly the neglect of complementary hypotheses.   

                                                             
3 In our application of support theory we will not distinguish between different descriptions of the same event, so 
this distinction will not be especially relevant for most of this paper.  However, we will return to the distinction 
between events and their descriptions in the discussion. 
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The notion that complementary hypotheses receive less weight in relative than absolute 

likelihood judgment is consistent with prior literature in judgment and decision making.  

Research on the compatibility principle holds that the weight that a particular stimulus feature 

receives is enhanced by its compatibility with the response mode (Tversky, Sattath & Slovic, 

1988; see also Goldstein & Einhorn, 1987; Mellers, Ordóñez, & Birnbaum, 1992). Assessment 

of absolute likelihood, particularly when made on a percentage or fractional probability scale, 

is compatible with proportion judgments.  Thus, it may be natural to consider the proportion of 

total evidence favoring the focal event when making such assessments, as in support theory. 

Assessment of relative likelihood, however, is more compatible with a comparison of evidence 

strength for the events being contrasted (e.g., whether it is easier to recall days with rain 

recently in Los Angeles or Seattle) than a comparison proportions of evidence favoring each 

target event over its corresponding complement. 

Complement neglect is also consistent with the observation that more prominent 

attributes tend to be afforded greater weight for tasks whose goal is to differentiate among 

options (Fischer & Hawkins, 1993; Fischer, Carmon, Ariely & Zauberman, 1999).  In this case 

the focal hypotheses (e.g., rain in Seattle and Los Angeles) are more salient than the 

corresponding complementary hypotheses (i.e., no rain in Seattle and Los Angeles) because the 

rainy scenarios are explicitly mentioned.   

The notion that people afford greater weight or attention to focal information relative to 

contrary information, even when the alternative information is equally diagnostic, has 

precedence in literatures ranging from comparative social judgments (Chambers & Windchitl, 

2004) to judgments of subjective well-being (Wilson, Wheatley, Meyers, Gilbert, & Axsom 

2000) to consumer choice (Hoch, 1985) to judgmental confidence (Koehler, 1991) to the 

judged probability of grouped hypotheses (Brenner & Rottenstreich, 1999).  We refer to the 
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tendency to underweight complementary events in relative likelihood judgment as the 

complement neglect hypothesis. 

When a judge has roughly equivalent knowledge concerning events under 

consideration, complement neglect will have little effect: beliefs in relative and absolute 

likelihood judgment will coincide.  However, complement neglect can lead to violations of 

both procedure invariance and ordinal complementarity in situations where a person can 

summon more evidence for one pair of complementary hypotheses than for another pair of 

complementary hypotheses.  Most commonly this can occur when one pair of complementary 

hypotheses is more familiar than another pair.  For instance, suppose an American economist is 

asked to assess the future unemployment rates in both the United States and Bangladesh.  This 

economist may be able to conjure several compelling reasons why the U.S. unemployment rate 

could rise or hold steady in the coming year and an even greater number of compelling reasons 

why it could fall.  That same economist, if pressed, might summon a couple of weak reasons 

why the unemployment rate in Bangladesh could rise or hold steady in the coming year and a 

couple of weak reasons why it could fall.  The complement neglect hypothesis suggests that 

this economist will say that unemployment is “more likely to rise or hold steady” in the U.S. 

than in Bangladesh (because it is easier to come up with compelling reasons for this scenario in 

the U.S. than Bangladesh), but also say that unemployment is “more likely to fall” in the U.S. 

than in Bangladesh (because it is easier to come up with compelling reasons for this scenario in 

the U.S. than Bangladesh).  In contrast, assuming this economist affords equal consideration to 

the focal and complementary hypotheses in absolute likelihood judgment, consistent with 

support theory, she will assign a higher probability to unemployment rising or holding steady 

in Bangladesh than the U.S. 
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In sum, the complement neglect hypothesis (in conjunction with support theory) 

predicts a tendency to judge the more familiar event “more likely” to occur than the less 

familiar event while at the same time: (1) assigning the more familiar event a lower probability 

than the less familiar event (thus violating procedure invariance); and (2) judging the non-

occurrence of the familiar event “more likely” than that of the less familiar event (thus 

violating ordinal complementarity).  We refer to violations of procedure invariance and ordinal 

complementarity as “belief reversals” and to the specific tendency to deem more familiar 

events more likely as “familiarity bias” (see Fox & Levav, 2000). 

The remainder of this paper is organized as follows. We begin with a review of prior 

evidence and present new evidence for these two forms of belief reversal.   Next, we develop a 

theoretical model that generalizes support theory (Tversky & Koehler, 1994; Rottenstreich & 

Tversky, 1997) by embedding it within the contingent weighting model (Tversky, Sattath & 

Slovic, 1988), and show how and when this “Contingent Weighting of Support” model (CWS) 

predicts each kind of belief reversal.  Third, we explicitly test the fit of the CWS model to data 

and measure its parameters, thus directly testing the complement neglect hypothesis.  We 

conclude with a discussion of extensions and implications of the model. 

 

2. Evidence for Belief Reversals. 

A. Violation of ordinal complementarity: Between-subject demonstrations.   

Belief reversals are more likely to occur when people are presented with one complementary 

pair of hypotheses that are high in support and another complementary pair of hypotheses that 

are low in support.  To demonstrate, we constructed a pair of mutually exclusive and 

exhaustive college majors (engineering and literature, see below) and assembled profiles 

(courses that two different students had enrolled in) that were designed to be either highly 
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representative of both majors or unrepresentative of both majors.  Studies have shown that the 

relative likelihood of various descriptions of a person (e.g. that they are a bank teller or a 

feminist) are predicted by the perceived representativeness of the profile with the descriptions 

(Tversky & Kahneman, 1983).  Thus, we expected that a student who had enrolled in classes 

that were more representative of both majors would also be perceived to be more likely to have 

subscribed to both majors.  

Method.  We asked 76 students passing through a major walkway on the UCLA campus 

to complete the following item in exchange for their choice of a candy bar or soda: 

Aaron	
  and	
  Ben	
  live	
  in	
  a	
  dormitory	
  that	
  houses	
  only	
  Engineering	
  majors	
  and	
  Literature	
  
majors.	
  	
  	
  During	
  their	
  first	
  year	
  of	
  college	
  each	
  took	
  the	
  following	
  courses	
  (among	
  others):	
  

	
  
AARON:	
   	
   	
   	
   	
   	
   BEN:	
  
Calculus	
   	
   	
   	
   	
   	
   Biology	
  
Classical	
  Mythology	
   	
   	
   	
   	
   Music	
  Composition	
  
Computer	
  Science	
   	
   	
   	
   	
   Philosophy	
  
English	
  Composition	
   	
   	
   	
   	
   Psychology	
  
Physics	
  	
   	
   	
   	
   	
   	
   Spanish	
  
Seminar	
  on	
  Shakespeare	
   	
   	
   	
   U.S.	
  History	
  

 

In the order presented above, Aaron’s course load was designed to be representative of both 

engineering and literature whereas Ben’s course load was designed to be representative of 

neither major. We counterbalanced the order in which these profiles were presented.     

Results. Eighty-nine percent of the participants who were presented with the 

descriptions in the order above (n = 38) indicated that Aaron.  Thus, in order to satisfy ordinal 

complementarity, roughly 11% should have reported that Ben was more likely to be a literature 

major.  However, when a second group of participants (n = 38) was who was more likely to be 

a literature major, 58% indicated Aaron, a strong violation of ordinal complementarity (89% + 

58% = 147% >> 100%, p < .0001 by one-tailed Fischer’s exact test). 
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In a previous paper (Fox & Levav, 2000), we provided several between-participant 

demonstrations of violations of ordinal complementarity that are summarized in Table 1A and 

Figure 1A.  Most of these demonstrations entailed assessments of natural events for which the 

arguments for and against each event were not made explicit.  For instance, consider the 

following item that was administered to Duke University students (Study 1).  Duke students 

devote a great deal of time following men’s basketball, but most know little or nothing about 

the fencing team.  Hence, we reasoned that our participants would find both the target question 

and complementary question about Duke basketball to be highly familiar (labeled H and H , 

respectively) and that they would the find target and complementary question about Duke 

fencing to be much less familiar (labeled L and L , respectively).  Our results documented a 

strong familiarity bias: 75% of participants in a first group said they thought it was “more 

likely” that Duke would beat the University of North Carolina (UNC) in an upcoming men’s 

basketball game than in an upcoming men’s fencing tournament.  Thus, if ordinal 

complementarity holds, one would expect 25% of participants in a second group to indicate 

that it was “more likely” that UNC would beat Duke in men’s basketball than fencing.  Instead, 

a significantly higher proportion, 44%, indicated this belief.  Put another way, the proportion of 

participants indicating that H is more likely than L plus the proportion of participants indicating 

that H  is more likely than L  was 75% + 44% = 119% > 100%, indicating a strong familiarity 

bias that violates ordinal complementarity.   

We replicated this pattern in all five studies reported in Table 1A.  As can be seen in 

column 7, participants exhibited a significant bias to order high familiarity (focal and 

alternative) hypotheses above corresponding low familiarity hypotheses.  This can also be seen 
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in Figure 1A as the sum of proportions choosing the high familiarity hypothesis and its 

complement summing to more than one for every study.   

The question arises what pattern one might expect for ratings of which event is “less 

likely.”  One could argue that such a response mode would direct attention to reasons why 

relevant target events would not occur (i.e. the complementary events), thereby showing a bias 

to rate more familiar events and their complements less likely.  However, the complement 

neglect hypothesis suggests instead that because “less likely” judgments entail explicit relative 

likelihood judgment, will follow a pattern similar to “more likely” judgments in which 

evidence for complementary events is underweighted, thereby showing a bias to rate less 

familiar events and their complements less likely.  Indeed Fox and Levav’s (2000) data reveal 

such a pattern (Studies 4 and 5).  It is noteworthy that the propensity to exhibit a familiarity 

bias when rating which of two hypotheses is more likely is roughly equal to the propensity to 

exhibit an “unfamiliarity” bias when rating which of two hypotheses is less likely.  

Interestingly, the question which hypothesis is “more unlikely” appears to translate to 

an evaluation of which complementary hypothesis is more likely rather than which focal 

hypothesis is “more likely.”  In two demonstrations Yamagishi (2002; Study 3) asked 

participants to evaluate which of two profiles was “more likely” or “more unlikely” to belong 

to a target category (e.g., “feminist”).  One profile was both highly representative of the 

category (e.g., an outspoken former philosophy major interested in social justice and 

participated in anti-nuclear demonstrations) and also high unrepresentative of the same 

category (e.g., pro-life, active in church, and supports prayer in school).  The other profile was 

neither particularly representative nor unrepresentative.  Participants tended to rate the 

representative and unrepresentative profile as both “more likely” and “more unlikely” to be a 

member of the target category.   



Ordering Beliefs  page 12 

 

B. Violation of ordinal complementarity: Within-subject demonstrations. 

 The violations of ordinal complementarity reviewed above all relied on between-subject 

designs.  To test the robustness of these violations, we also explored whether familiarity bias 

persists in within-subject designs.   

Participants. We recruited participants (N = 35) from bulletin boards of online groups 

dedicated to each of 29 National Basketball Association (NBA) teams, as well as two groups 

devoted to general professional basketball and fantasy league discussion.  We offered 

participants a chance to win a $50 cash prize in exchange for completing the survey.   

Procedure.  We asked participants to rate eight events relating to the upcoming NBA 

collegiate player draft using a scale from 1 “most likely” to 8 “least likely,” using each ranking 

only once.  The questions concerned both familiar and unfamiliar players that had appeared on 

a list of NBA prospects culled and rated by a leading draft expert and national television 

commentator.  The relative draft position of four players served as our target events: Elton 

Brand and Steve Francis (familiar; these players were the top two picks in the NBA draft that 

year) and Keith Carter and Roberto Bergerson (unfamiliar; Carter went undrafted and 

Bergerson was the 52nd pick).  The order of the events was randomly determined and appeared 

as follows: 

___	
  Elton	
  Brand	
  is	
  chosen	
  ahead	
  of	
  Steve	
  Francis	
  in	
  the	
  draft.	
  	
  (H )	
  
___	
  Scott	
  Padgett	
  is	
  a	
  second	
  round	
  pick	
  in	
  the	
  draft.	
  
___	
  Keith	
  Carter	
  is	
  chosen	
  ahead	
  of	
  Roberto	
  Bergerson	
  in	
  the	
  draft.	
  	
  ( L )	
  
___	
  Ademola	
  Okulaja	
  is	
  selected	
  in	
  the	
  first	
  round	
  of	
  the	
  draft.	
  
___	
  Tim	
  Young	
  is	
  selected	
  ahead	
  of	
  Heshimu	
  Evans	
  in	
  the	
  draft.	
  
___	
  Steve	
  Francis	
  is	
  chosen	
  ahead	
  of	
  Elton	
  Brand	
  in	
  the	
  draft.	
  	
  (H )	
  
___	
  Roberto	
  Bergerson	
  is	
  chosen	
  ahead	
  of	
  Keith	
  Carter	
  in	
  the	
  draft.	
  	
  ( L )	
  
___	
  Scott	
  Padgett	
  is	
  a	
  lottery	
  pick	
  (picks	
  1-­‐13)	
  in	
  the	
  draft.	
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We randomly assigned respondents either to the above questionnaire or to a version that 

presented the events in the opposite order.   

 Results.  We coded participants’ responses into three categories: familiarity bias (either 

listing both of the highly familiar over both of the less familiar, H > H > L > L, or alternating 

these rankings H > L > H > L), a reverse, “unfamiliarity” bias (either listing both the less 

familiar over both of the highly familiar, L > L > H > H, or alternating these rankings L > H > L 

> H), and a normatively defensible ranking (either listing H > L > L > H or L > H > H > L). 4  

Of the 35 participants, we found that 10 conformed to the familiarity bias pattern, only 1 

conformed to the unfamiliarity bias pattern, and the remaining 24 indicated normatively 

defensible rankings. Although the familiarity bias here appears small, note that our study is 

quite conservative because of its transparency—it takes little effort for participants to see that 

the focal and alternative hypotheses appear in the same short list, creating a strong demand for 

consistency.  If participants had given random responses, the proportion indicating each of 

these three categories would be roughly equal, a null hypothesis which clearly can be rejected 

(χ2(2) = 13.4, p = .001).  Moreover, participants were ten times more likely to indicate a 

familiarity bias than an unfamiliarity bias (p = .01 by sign test).     

C. Violation of procedure invariance: Between-subjects demonstrations. 

Table 1B and Figure 1B present examples of violations of procedure invariance from 

Fox & Levav (2000).  For these items we asked groups of respondents to judge the probability 

of the highly familiar hypothesis (and its complement) and less familiar hypothesis (and its 

                                                             
4 Because we present complementary events and the designation of H versus H and L versus L  is arbitrary, we do 
not distinguish between events and their complements in the analysis of these results (e.g. we treat H > H > L > L  
the same as H  > H > L > L ). 
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complement).5  For example, in Study 7, we asked a group of American participants whether 

they thought that it was “more likely” that “the winner of the next U.S. Presidential election 

[is/is not] a member of the Democratic Party” or “the winner of the next British Prime 

Ministerial election [is/is not] a member of the Labor party” [alternative wording in brackets].  

Other groups were asked to judge the probabilities of the same events.  Thus, roughly half the 

participants ordered their beliefs over these events directly and for the remaining participants 

we inferred these orderings from their judged probabilities.  This design provided tests of both 

varieties of belief reversal (violations of procedure invariance and of ordinal complementarity).  

First, although 64% of participants in the relative likelihood condition indicated that a 

Democratic winner was “more likely” than a Labor winner, only 36% of participants in the 

absolute likelihood condition reported a higher probability for a Democratic winner than a 

Labor winner.  Likewise, although 76% of participants in the relative likelihood condition 

indicated that a non-Democratic winner was “more likely” than a non-Labor winner, 73% of 

participants provided a higher probability for Democrat than Labor.6  Taken together, there was 

a significant violation of ordinal complementarity evident in the relative likelihood conditions, 

but not in the absolute likelihood conditions: The proportion of participants rating Democrat 

more likely than Labor plus the proportion of participants rating non-Democrat more likely 

than non-Labor was a striking 140% (p < .005). Meanwhile, the proportion of participants 

providing a higher probability for Democrat than Labor plus the proportion providing a higher 

probability for non-Democrat than non-Labor summed to 109% (n.s.), a significant interaction 

                                                             
5 In Study 6 we only elicited relative likelihood and probability judgments for a focal hypothesis and not the 
complementary hypothesis.  This allowed a test of violations of procedure invariance, but not ordinal 
complementarity. 
6 We broke ties in the ordinal analysis of judged probabilities by assigning half to H > L and half to L > H, and so 
forth.  For a fuller description of the frequency of ties see Table 1 of Fox & Levav (2000). 
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(p < .05).  In each of the studies listed there is a significantly stronger tendency to rate the more 

familiar hypothesis “more likely” than assign it a higher probability.7 

D. Violations of procedure invariance: Ranking versus rating likelihood. 

We next attempt to replicate our within-participant demonstration of familiarity bias in 

relative likelihood judgment and determine whether this effect will be significantly attenuated 

when participants are asked instead to rate the absolute likelihood of each event. 

Participants.  One hundred and seventy-one MBA students at Duke University 

participated in this study, which was embedded in a larger survey packet.  A $10 charitable 

contribution was made in the name of each respondent in exchange for his or her participation. 

Procedure.  Participants responded to one of two versions of a questionnaire item.  In 

one condition (n = 73) participants were asked to rank a set of eight events from “most likely” 

to “least likely.”  In a second condition they (n = 97) were asked to provide their best estimate 

of the probability for each of the same eight events.  Events concerned the future relative 

positions of pairs of graduate programs in the U.S. News and World Report graduate program 

ranking.  Two target events and their complements (i.e., four events), one familiar and one 

unfamiliar, were combined with four filler events.  The events are listed below, with the target 

events marked: 

	
   U.	
  of	
  Pennsylvania	
  is	
  ranked	
  above	
  Yale	
  among	
  medical	
  schools.	
  
	
   Syracuse	
  is	
  ranked	
  above	
  Rutgers	
  among	
  library	
  sciences	
  programs.	
  	
  ( L )	
  

Wharton	
  (U.	
  Penn.)	
  is	
  ranked	
  above	
  Harvard	
  among	
  business	
  schools.	
  (H )	
  
MIT	
  is	
  ranked	
  above	
  Michigan	
  among	
  physics	
  departments.	
  
Columbia	
  is	
  ranked	
  above	
  U.	
  of	
  Pennsylvania	
  among	
  medical	
  schools.	
  

	
   Rutgers	
  is	
  ranked	
  above	
  Syracuse	
  among	
  library	
  sciences	
  programs.	
  	
  ( L )	
   	
  
UCLA	
  is	
  ranked	
  above	
  Cornell	
  among	
  physics	
  departments.	
  
Harvard	
  is	
  ranked	
  above	
  Wharton	
  (U.	
  Penn)	
  among	
  business	
  schools.	
  	
  (H )	
  

                                                             
7 This tendency is obviously more pronounced in Studies 7 & 8 among pairs of hypotheses for which a minority of 
participants assigned a higher probability to the more familiar hypothesis.  Naturally, when most participants rate 
the more familiar hypothesis more probable, ceiling effects will come into play and there will be “less room” for a 
stronger tendency among participants assessing relative likelihood. 
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We assumed that because our participants were incoming MBA students, the items regarding 

business schools would be quite familiar to them, while the items regarding library sciences 

would be wholly unfamiliar.8  The order of event presentation was determined at random and 

counterbalanced. 

Results.  As in the NBA draft study, we coded our participants’ responses into three 

categories in the ranking and probability conditions: familiarity bias, “unfamiliarity” bias, or a 

normatively defensible ranking.  Once again, had participants been responding at random, the 

proportion indicating each of these three categories would be roughly equal.  In contrast, of the 

73 participants in the ranking condition, we found that 35 conformed to the familiarity bias 

pattern, only 1 conformed to the unfamiliarity bias pattern, and the remaining 37 indicated 

normatively defensible rankings (χ2(2) = 35.1, p < .0001).  The corresponding numbers for the 

probability condition were 25, 2, and 70, respectively (χ2(2) = 72.2, p < .0001).  We speculate 

that the residual familiarity bias in the probability condition was a result of some participants 

having anchored their probabilities on events that they had rated and adjusting according to 

whether subsequent items appeared more or less likely.  More importantly, the results indicate 

that the familiarity bias was significantly attenuated in the probability condition relative to the 

ranking condition (25% versus 48%, respectively; χ2(1) = 8.97, p < .005), a highly significant 

interaction. 

 
E. Restoring Symmetry. 

                                                             
8 In a contemporaneous survey of students admitted to Duke’s MBA program, 99% indicated that they had used 
Business Week and/or U.S. News & World Report’s published rankings of business schools in deciding which 
business school to attend.  
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According to the present account, belief reversals arise from a tendency to underweight 

the complementary hypothesis in relative likelihood judgment but not in absolute likelihood 

judgment.  This leads us to the conjecture that we may induce greater symmetry in weighting 

of the focal and complementary hypotheses, and hence attenuate complement neglect, by 

drawing attention to the complementary hypothesis immediately prior to eliciting relative 

likelihood judgment (cf. Koehler, 1991).  To test this notion we asked students to predict which 

set of films (domestic or foreign) was more likely to win its respective Academy Award.  We 

drew some participants’ attention to the complementary hypothesis by asking them to first 

indicate whether they preferred that one of the films in the focal set or complementary set 

would win its award category. 

Participants. One hundred and seven MBA students at Columbia University 

participated in our study as unpaid volunteers.  

 Procedure.  Participants were told that we were interested in their answers to questions 

about films that had been nominated for a Best Picture Academy Award (“The Aviator,” 

“Finding Neverland,” “Million Dollar Baby,” “Ray” and “Sideways”) and Best Foreign Film 

Academy Award (“As It Is in Heaven,” “The Chorus,” “Downfall,” “The Sea Inside” and 

“Yesterday”).  We anticipated that our U.S.-based participants would be more familiar with the 

films nominated for the Best Picture award than the Best Foreign Film award.  We listed all 

films nominated in both categories so that participants would not be forced to rely on their 

memories to answer subsequent questions.   

 After presenting this background information we asked participants three questions.  

The relative likelihood question was worded as follows alternate wording in [brackets]: 

Which	
  of	
  the	
  following	
  two	
  options	
  do	
  you	
  think	
  is	
  more	
  likely	
  to	
  occur	
  (check	
  either	
  
Option	
  A	
  or	
  Option	
  B	
  below):	
  



Ordering Beliefs  page 18 

	
  
_____	
  Option	
  A:	
  [“The	
  Aviator”	
  OR	
  “Ray”	
  /	
  “Finding	
  Neverland”	
  OR	
  “Million	
  Dollar	
  
Baby”	
  OR	
  “Sideways”]	
  wins	
  best	
  picture.	
  	
  

	
  
_____	
  Options	
  B:	
  [“As	
  It	
  Is	
  in	
  Heaven”	
  OR	
  “The	
  Sea	
  Inside”	
  /	
  “The	
  Chorus”	
  OR	
  
“Downfall”	
  OR	
  “Yesterday”]	
  wins	
  best	
  foreign	
  film.	
  
 

We also asked two questions about which cluster of films included the participant’s “personal 

preference” to win its category’s award, Best Picture and Best Foreign Film (e.g., Which do 

you personally prefer?: A) “The Aviator” or “Ray” wins Best Picture; or B) “Finding 

Neverland,” “Million Dollar Baby” or “Sideways” wins Best Picture).   

Our manipulation consisted of varying the order of the likelihood and preference 

questions.  In the control condition the likelihood question was asked before the preference 

questions; in the “complement salient” condition the preference questions were asked before 

the likelihood question.  We expected that the preference questions would draw attention to the 

complementary hypotheses (i.e., non-focal movies), thereby attenuating complement neglect 

and the resulting familiarity bias. 

 Results.  Table 2 and Figure 2 present the number of participants endorsing the familiar 

(H/H ) or unfamiliar (L/ L ) option in each condition.  As predicted, we found a strong 

familiarity bias in the control condition that was significantly attenuated in the complement 

salient condition (z = 2.80, p < .005).  These results support the notion that complement neglect 

is a consequence of underweighting the complementary hypothesis and that it can be reversed 

by explicitly drawing attention to these hypotheses. 

3. Theory 

To formalize the complement neglect hypothesis we begin with the theoretical foundation 

of support theory (Tversky & Koehler, 1994; Rottenstreich & Tversky, 1997), in which 

subjective probability is not attached to events, as it is in other models, but rather to 
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descriptions of events, called hypotheses.  Hence, two descriptions of the same event may be 

assigned different probabilities (i.e., the model is nonextensional).  For instance, the hypothesis 

“precipitation in Chicago on April 1” might be assigned a lower probability than the hypothesis 

“rain or snow or sleet or hail in Chicago on April 1” (For other examples, see Sloman et al., 

2004; Fox & Rottenstreich, 2003; Fox & Levav, 2004).  In the demonstrations presented in this 

paper we will assume a canonical description of each event, and will therefore it will not be 

necessary to distinguish between events and hypotheses, but for completeness we note that our 

model retains this feature of support theory and can therefore accommodate nonextensionality. 

Support theory assumes that each hypothesis A has a nonnegative support value s(A) 

corresponding to the strength of evidence for this hypothesis.  The judged probability P(A, A ) 

that hypothesis A rather than A  holds, assuming that one and only one of them obtains is 

given by: 

 

(1)   
)()(

)(),(
AsAs

AsAAP
+

= . 

 
Thus, judged probability is interpreted as support for the focal hypothesis, A , relative to the 

complementary hypothesis, .  For example, the probability of rain tomorrow (A) rather than 

no rain ( A ) is assumed to be the support for rain divided by the sum of support both for and 

against rain.  It is convenient to translate eq. (1) into an odds metric: 

 

(2)  
)(
)(

),(1
),(),(

As
As

AAP
AAPAAR =

−
≡ . 

 
Note that R is a notational device that is derived from judgments of probability, and that the 

ordering of hypotheses by odds is formally equivalent to the ordering of hypotheses by judged 

probability.   

A
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Contingent weighting in ordering beliefs. 

Consider two (not necessarily exclusive) hypotheses H and L whose complements are 

H and L , respectively.  Let ≥i be the belief ordering of hypotheses under elicitation mode i (i 

= P, M), where P refers to the belief ordering inferred from separately evaluated judged 

probabilities and M refers to the direct assessment of which hypothesis is “more likely.”  It 

readily follows from eq. (2) that ),(),( LLRHHR ≥  iff , so that 

LH P≥   iff  )(log)(log)(log)(log LsLsHsHs −≥− . 
 

 
This is merely a special case of the contingent weighting model (Tversky, Sattath & Slovic, 

1988, Equation 5): 

 
(3)  LH i≥  iff )(log)(log)(log)(log LsLsHsHs iiii βαβα −≥− ,   
 
 
with i = P, 1=Pα , and 1=Pβ .  Here iα  and iβ  reflect the relative weight in response mode i 

of evidence favoring the focal and their complementary hypotheses, respectively.  In support 

theory the focal and complementary hypothesis receive equal and opposite weight.  However, 

the complement neglect hypothesis asserts that support for the complement receives less weight 

than the focal in relative likelihood judgment: mm αβ /  ≤ 1, whereas the null hypothesis is that 

this ratio will not differ significantly from unity. Our conjecture that the complementary 

hypothesis will loom larger in cardinal judgment (of probability) than in ordinal judgment (of 

which event is more likely) can be expressed as mmPP αβαβ // ≥ , whereas the null hypothesis 

is that these ratios will not significantly differ.  We refer to equation (3) as the Contingent 

Weighting of Support (CWS) model.   

)(
)(

)(
)(

Ls
Ls

Hs
Hs

≥
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Implications. 

Of course, if focal and complementary hypotheses receive equal weight in ordinal 

judgment (i.e., mm βα = ), then belief orderings are determined by the proportion of support for 

the hypothesis in question (as in support theory) and are not affected by the absolute amount of 

support for the focal and alternative hypotheses.  On the other hand, if mm βα >> , then belief 

ordering is essentially determined by support for the focal hypothesis.  Second, note that 

whenever the total amount of support for the focal and complementary hypothesis is the same 

for both events (i.e., )()()()( LsLsHsHs +=+ ), then the belief ordering over H and L will be 

the same regardless of the relative weight to the focal versus complementary hypothesis.9   

If the sum of support for and against one hypothesis is greater than support for and 

against a second hypothesis (i.e., )()()()( LsLsHsHs +>+ ) and if complement neglect is 

present in relative likelihood judgment and more pronounced than in absolute likelihood 

judgment (i.e., 1// ≤≤ PPmm αβαβ ), then two patterns emerge.  First, situations can arise in 

which the familiar event is deemed both more likely to occur than the unfamiliar event              

( LH m> ) and more likely not occur than the unfamiliar event ( LH m> ), a violation of 

ordinal complementarity. Second, situations can arise in which the more familiar event is 

deemed more likely ( LH m> ) but is assigned a lower probability ( HL P> ), a violation of 

procedure invariance. We next derive more specific conditions under which these two forms of 

belief reversal are expected to emerge. 

                                                             
9 To see why, suppose the total amount of support for both pairs of hypotheses equals some constant (i.e., 

)()()()( LsLsHsHs +=+  = C).  In this case, s(H) ≥ s(L) iff )()( LsHs ≤  so that LH i≥  for all α>0 and β≥0.  
By way of analogy, if one assesses which city is rainier by counting the number of days per year of rain in each 
city or the proportion of days of rain per year, one reaches the same conclusions because the total number of days 
in a year is the same in both cities.  
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First, we assume the CSW model (Eq.3), and no complement neglect for judged 

probability, 1// =≤ PPmm αβαβ .  Next, we need to define parameters measuring: (a) the 

extent of complement neglect in relative likelihood judgment and (b) the extent to which total 

support differs for the higher- versus lower-familiarity hypothesis pairs.  The domain of belief 

reversals is expected to increase in both variables.  Define the ratio of weight to the alternative 

to focal hypotheses:  

mmm αβκ /≡ , where 10 ≤< mκ ,  

and total support for the high familiar and low familiarity domains as follows: 

)()( HsHsh +≡ , )()( LsLsl +≡ , where h ≥ l. 

Now, define the ratio of total support in the low familiarity to high familiarity domains,  

 hl /≡σ  where by definition 10 ≤< σ .   

Finally, we define two variables that determine the conditions under which we expect belief 

reversals, given a particular combination of complement neglect (kM) and support asymmetry 

(σ) parameter values: the proportion of support on the focal hypothesis for each domain.  

Define p and q as the proportion of support favoring the focal hypothesis for the high and low 

familiarity domains, respectively, 

)()(
)(
HsHs

Hsp
+

≡ , )()(
)(
LsLs

Lsq
+

≡
,
 (note that under support theory LH P≥  iff  qp ≥ ).   

It can be shown (see Appendix 1) that the following belief reversals are expected under 

the following conditions: 

(4a) LH m≥ and HL P≥ whenever 
mm q

q
p
p

κκ σ
σ
])1[()1( −

≥
−

 and pq ≥ , 

in which case we also get LH m≥ , for a second belief reversal, and 
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(4b) LH m≥ and HL P≥ whenever 
mm q

q
p
p

κκ σ
σ
][
)1()1( −

≥
−

 and qp ≥   (i.e. 1-q ≥ 1-p), 

in which case we also get LH m≥ , for a second belief reversal. 

 Figure 3 depicts the conditions under which both forms of belief reversal are expected, 

according to Equations (4a) and (4b).  In each panel, p (the proportion of total support favoring 

the focal in the case of the high familiarity event) is depicted on the vertical axis and q (the 

proportion of total support favoring the focal in the case of the low familiarity event) is 

depicted on the horizontal axis.  Columns indicate different levels of the relative weight to 

alternative hypothesis, κm = .2, .5, .8.  Rows indicate levels of total support for the low 

familiarity domain relative to the high familiarity domain, σ = .2, .5, .8. In each case the 

triangle above the identity line represents the region in which LH m≥ , whereas the triangle 

below the identity line represent the region in which LH P≥ .  The upper triangle also 

represents the region in which LH m≥ , which also extends to the lower “lip” that is bounded 

by the contour below the identity line.  Similarly, the lower triangle represents the region in 

which LH m≥ , which also extends to the upper “lip” that is bounded by the contour above the 

identity line. 

 Thus, the lips in each panel represent the regions of belief reversals: the lower lip is the 

region in which HL P≥  and LH m≥  and the upper lip is the region in which HL P≥  and 

LH m≥  (violating procedure invariance); both lips represent the region in which LH m≥  and 

LH m≥  (violating ordinal complementarity).  Not surprisingly, these belief reversals are 

expected to be more prevalent as σ and κM decrease (i.e., we move to the left and up, 

respectively). 
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4. Fitting the CWS model. 

In this section we fit the Contingent Weighting of Support model and directly test the 

complement neglect hypothesis.  In the experiments that follow we asked participants to assess 

the relative likelihood that various teams in a sports tournament will win their respective 

match-ups, the absolute likelihood that each team will win its match-up, and the relative 

strength of these teams (as a proxy for support).  We must first show how the CWS model can 

be tested from these data.   Equation (3) can be restated as follows: 

(6) LH i≥ iff 0)](ln)([ln)](ln)([ln ≥−−− LsHsLsHs ii βα . 

To test the complement neglect hypothesis we must obtain measures of the weight 

afforded the focal hypothesis, iα , and the weight afforded the alternative hypothesis, iβ , for 

absolute and relative likelihood judgment.  To do so we must also obtain a measure of raw 

evidence strength.  Recall that support for a hypothesis (e.g., UCLA beats USC in an upcoming 

basketball game) is a hypothetical construct that can only be inferred from corresponding 

probability judgments.  However, Tversky & Koehler (1994) observe that by invoking minimal 

assumptions, support for hypothesis A derived from judged probability, )(As , can be related to 

the raw rating of evidence strength (e.g., the perceived strength of the UCLA and USC teams), 

)(ˆ As , by a power function, kAsAs )](ˆ[)( = .  These assumptions were empirically verified by 

Fox (1999) in the context of a sports tournament (see also Koehler, 1996).  Plugging this 

relation into Equation 6, we get: 

LH i≥  iff 0)](ˆln)(ˆ[ln)](ˆln)(ˆ[ln '' ≥−−− LsHsLsHs ii βα , 

where PP kαα =' , PP kββ =' .  Thus, we can fit the CWS model using logistic regression: 
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(7) )](ˆln)(ˆ[ln)](ˆln)(ˆ[ln))]Pr(1/()ln[(Pr( LsHsLsHsLHLH iiii −ʹ′−−ʹ′=>−> βα , 

where the Pr(H >i L) is the proportion of responses in which H is rated above L in response 

mode i. According to the complement neglect hypothesis, we should find that:  

1 ≈ β'P/α'P ≥ β'M/ α'M. 

Recall the responses in equation (7) are coded by whether hypothesis H is rated above 

hypothesis L based on separate assessments of probability.  The logistic analysis above 

assumes that the probability of rating H over L using judged probability (absolute likelihood) or 

direct assessment of relative likelihood is a function of weighted strength of focal and 

alternative teams.   

We can also examine whether the extremity in participants’ ratings can be predicted in 

the same manner.  According to support theory, we can derive weights on the focal and 

complementary hypothesis from log-odds (derived from judged probability) of hypotheses H 

and L: 

)](ˆln)(ˆ[ln)](ˆln)(ˆ[ln),(ln),(ln '' LsHsLsHsLLRHHR PP −−−=− βα  

Likewise, we might derive these weights from raw ratings of relative likelihood on a likert 

scale: 

)](ˆln)(ˆ[ln)](ˆln)(ˆ[ln),( '' LsHsLsHsLLHHm mm −−−= βα , 

where ),( LLHHm is the rating of the extent to which hypothesis H is rated as “more likely” 

than hypothesis L. 

 

Method 

We conducted a pair of studies to parameterize the CWS model.  In these studies we 

asked participants to make various judgments about two upcoming college basketball 
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tournaments, the Atlantic Coast Conference (ACC) tournament and the 3rd round of the 

National Collegiate Athletic Association (NCAA) tournament.  The studies were conceptual 

replicates with identical procedures, so we present them simultaneously.  The sporting domain 

is attractive for running a test of the CWS model because previous studies (Fox, 1999; Koehler, 

1996) have demonstrated that it allows for direct assessment of support as rated strength of 

teams.  Moreover, this domain provides a conservative test of complement neglect because the 

evaluation of the relative likelihood of teams winning competitive games demands at least 

some consideration of whom each team is playing (i.e., the complementary hypothesis). 

Participants.  We recruited a total of 648 participants (N = 384 in the ACC tournament 

study and N = 264 in the NCAA tournament study) through advertisements on ACC and 

NCAA basketball fan websites two days prior to the first round of the ACC tournament and the 

third round of the NCAA tournament, respectively.  Each advertisement included a link to a 

website that contained the study and its instructions. Participants were offered a chance to win 

a $100 cash prize in exchange for completing the experiment.   

Procedure.  The survey program comprised three sections: likelihood judgment, 

probability judgment, and strength ratings.  Four pairs of squads that were set to meet in the 

upcoming round were selected as target teams.  Teams were chosen so that a broad range of 

strengths would be represented across the pairings. 

In the likelihood section participants were asked to judge which of two teams was more 

likely to win its game.  On each trial two pairs of teams that were set to face each other were 

presented on opposite sides of the screen (e.g., team A vs. team B on the left; team C vs. team 

D on the right), with one team from each pair serving as the focal hypothesis (the team name 

was highlighted).  Participants indicated their judgment by clicking a point on a twenty-one 

point scale that ranged from –10 (team A is “much more likely” to win its game) to 0 (the 
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teams are “equally likely” to win their respective games) to +10 (team C is “much more likely” 

to win its game).  Note that for each pair of games there were four possible pairs of results that 

could be presented: Team A beats B and C beats D; B beats A and C beats D; A beats B and D 

beats C; and, B beats A and D beats C.  Note also that there were six possible ways to matchup 

two pairs of teams from the set of four: pairs 1&2, 1&3, 1&4, 2&3, 2&4, 3&4. Thus, in total 

there were 6 match-ups × 4 possible outcomes to be evaluated = 24 permutations.  The 

sequence of presentation of outcomes, as well as the sequence of presentation of match-ups 

within each outcome, was randomly determined for each participant.  The program chose one 

of the outcomes at random, followed by one of the six match-ups within that outcome, 

sampling without replacement.10  The position of each game result on the scale (i.e., on the -10 

or +10 side) was also randomly determined.  Participants were allowed to proceed only after 

entering a response, and allowed to click back only to the previous screen.  The instruction 

screen for the likelihood judgments was accessible throughout this phase of the experiment. 

Next, participants were instructed to complete 16 probability judgments in which they 

were asked to estimate the probability that a particular team would win its game.  The four 

target matchups were divided into two sets of four events (e.g., “team A beats team B”) and 

four complements (e.g., “team B beats team A”), with these sets separated by eight filler 

questions about college basketball trivia and other predictions.  Each question was presented 

individually on the screen.  Responses were entered on a twenty-one point scale that ranged 

from 0 to 100 in increments of 5.  The order of presentation of each set of four target matchups 

was randomized both between the two sets and within each respective set. 

                                                             
10 For the ACC sample the order of match-ups was only partially randomized due to a minor programming error.  
Because we found no significant effects of orderings in either study we surmise that this error had no effect on the 
results. 
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Finally, participants were asked to rate the strength of each of the eight target teams (cf. 

Fox, 1999; Koehler, 1996) on a scale from 1 to 100.  They were asked to label the strongest 

team “100,” and assess the strength of the remaining 7 teams relative to the team deemed 

strongest.  Because it was crucial that participants make careful assessments, they were 

instructed to verify each of their ratings after completion.  Participants could access the 

instruction screen as often as they liked. 

Results.   

 To fit the CSW model (Equation 3), for each participant we conducted an ordered 

logistic regression in which we classified judged probabilities and explicit relative likelihood 

judgments into three categories:  (1) AB > CD, (2) AB < CD, (3) AB = CD, where AB 

represents the event “team A beats team B,” and inequalities represent relative ordering of 

judged probabilities and relative likelihood judgments. 

Table 3 lists the mean weight to the focal and complementary hypotheses for both 

studies in relative and absolute likelihood judgment (i.e., values of κM and κp).  Consistent with 

the complement neglect hypothesis, when making explicit relative likelihood (“more likely”) 

judgments, participants placed significantly less weight on the complementary than focal 

teams.  In contrast, when making absolute likelihood (probability) judgments, there was no 

significant difference in weights afforded the strength of focal and complementary teams.  

Likewise, the median ratio of weight to the complementary hypothesis relative to the focal 

hypothesis in relative likelihood judgment was .77 and .89 for the ACC and NCAA studies, 
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respectively, whereas the median ratio for absolute likelihood judgment was 1.00 in both 

studies.11   

As another test of complement neglect, we examine the proportion of participants who 

placed less weight on the complementary hypothesis relative to the focal hypothesis in relative 

than absolute likelihood judgment.  This condition held for 66% and 66% of participants in the 

ACC and NCAA studies, respectively12, p < .0001 by sign test in each case). 

  An obvious disadvantage of the logit analysis is that by allocating relative and absolute 

likelihood judgments to categories that order belief strength, we discard information 

concerning the magnitude of these differences.  Thus, we replicated the foregoing analyses 

using a linear regression using the ratings of relative likelihood and the differences in judged 

probabilities as dependent variables.  In all cases the qualitative results are similar to those we 

have reported.  Table 4 reports the major results of the linear regression analysis.  It is 

noteworthy that the adjusted R2 were quite high for both probability and likelihood judgments 

in both studies, indicating a good fit of the model to the data.  We also note that the model 

tended to fit the probability judgments slightly better than the likelihood judgments.  This 

suggests that the more even weighting of support in absolute than relative likelihood cannot 

merely be attributed to a regression effect.     

  

 

Discussion 

 In this paper we articulate and test a model of absolute and relative likelihood judgment 

called the “Contingent Weighting of Support” (CWS) model that embeds support theory 
                                                             
11 Note that the effects cannot readily be explained by an inferior fit of the model to judged probability than 
relative likelihood judgment: median log-likelihood was -12.13 for P and -17.41 for M in the ACC study and -9.86 
for P and -10.67 for m in the NCAA study. 
12 There were 22 ties for the ACC study and 3 ties for the NCAA study; we distributed ties equally in compiling 
these proportions. 
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(Tversky & Koehler, 1994; Rottenstreich & Tversky, 1997) within the contingent weighting 

model (Tversky, Sattath & Slovic, 1988).  Moreover, we advance the complement neglect 

hypothesis, according to which people afford more weight to a focal event than to its 

complement when making relative likelihood judgments but not when making absolute 

likelihood judgments.  This account predicts two forms of belief reversals.  First, people will 

sometimes rate a more familiar event A to be “more likely” than a less familiar event B, and 

rate the more familiar complement of A more likely than the less familiar complement of B, 

violating the normative axiom of ordinal complementarity.  Second, people will sometimes rate 

a more familiar event A “more likely” than a less familiar event B, but judge the probability of 

B higher than the probability of A.  We provide evidence of both of these kinds of belief 

reversals, and test the CWS model directly.  Results of two studies show that expert sports fans 

afford less weight to the strength of the alternative team than the strength of the focal team 

when judging the relative likelihood of teams winning their respective match-ups than when 

assessing probabilities, consistent with the complement neglect hypothesis.  In the remainder of 

this section we review other forms of belief reversal, discuss the normative implications of the 

present findings, characterize how these findings relate to axioms of subjective probability, and 

suggest directions for future work. 

Other forms of belief reversal. 

In this paper we have argued that absolute and relative likelihood judgment promote 

differential attention to the focal versus alternative hypothesis.  It is also worth noting that these 

modes of judgment differ in the number of events under consideration—whereas relative 

likelihood naturally entails consideration of two distinct events (e.g., rain in Seattle versus Los 

Angeles), absolute likelihood entails consideration of a single event (e.g., rain in Seattle).  In 

the empirical demonstrations of belief reversals reported in this paper participants either 
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evaluated the relative likelihood of two events, the absolute likelihood of two events, or 

engaged in both tasks. This was a deliberate design choice so that we would not confound 

elicitation mode (relative versus absolute likelihood) with the number of events being 

evaluated.   

It is also worth asking whether we might find belief reversals in joint versus separate 

evaluation of hypotheses.  Prior research on preferences has documented a number of joint-

separate preference reversals (Hsee, Loewenstein, Blount & Bazerman, 1999), in which 

important attributes are easier to evaluate when options are considered together so that these 

attributes receive more weight in joint than separate evaluation.  For instance, in one study the 

number of entries in a music dictionary (an important attribute that is hard to evaluate by itself) 

exerted a greater influence on willingness-to-pay than the condition of the dictionary’s cover (a 

less important attribute that is easy to evaluate), but only when two dictionaries were evaluated 

together rather than separately (Hsee, 1996).   

We explored the possibility of evaluability effects in likelihood judgment by asking 

participants to provide judgments of probability based on a pair of cues.  Participants (N = 80) 

were MBA students completing the survey as part of larger packet of surveys, in exchange for 

a donation to charity.  In one condition participants were asked to read the profile of a single 

medical school applicant (“David” or “Jerry”), including his undergraduate grade point average 

(GPA) and his Medical College Admissions Test (MCAT; this is the standardized test used in 

all medical school admissions in the United States).  A second version of the questionnaire 

provided each applicant’s profile in succession (David and Jerry).  We assumed that 

participants would find the GPA cue to be evaluable when presented in isolation because of 

their familiarity with the scale, whereas the evaluability of the unfamiliar MCAT cue would 

benefit from the joint presentation of the applicants.  Note that the MCAT score is a more 
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diagnostic cue for acceptance to medical school than GPA.  The two conditions, as well their 

respective estimated probabilities, appear in Table 5. 

The results conform to our prediction.  In joint evaluation, the less evaluable—but more 

diagnostic—cue weighed more heavily in participants’ judged probabilities.  While Jerry and 

David were judged equally likely to be admitted in separate judgments, David was judged 

much more likely to be admitted than Jerry in joint evaluation (t = 2.32, p < 0.05).13  It appears 

that participants were better able to evaluate the MCAT score when the profiles were presented 

together than when they were presented separately. 

Violations of binary complementarity in probability judgment 

In the present paper we have focused on violations of ordinal complementarity in 

relative likelihood judgment and found little evidence of such violations in absolute likelihood 

judgment.  Although a number of researchers have found the judged probabilities of 

complementary events generally sum to unity (e.g., Wallsten, Budescu & Zwick, 1992; 

Tversky & Koehler, 1994; Tversky & Fox, 1995; Fox & Tversky 1998), a few studies have 

documented systematic violations of binary complementarity, which in principle imply 

possible violations of ordinal complementarity that could be due to distinct mechanisms from 

those described here. 

Macchi Osherson & Krantz (1999) present a study in which judged probabilities for 

highly unfamiliar complementary events (e.g., “The freezing point of gasoline  [alcohol] is not 

equal to that of alcohol [gasoline].  What is the probability that the freezing point of gasoline 

[alcohol] is greater than that of alcohol [gasoline]?)) sum to slightly less than one, a violation 

of binary complementarity.  Furthermore, they find that rephrasing each statements to make the 

                                                             
13 This t-statistic was calculated following Hsee (1996): t = ((MJA - MJB) – (MSA – MSB))/[(SJ

2/NJ + SSA
2/NSA+ 

SSB
2/NSB)]2, where A and  B refer to the different students, and  J and S refer to joint and separate evaluation, 

respectively. 
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alternative hypothesis more salient (e.g., “Either the freezing point of gasoline is greater than 

that of alcohol or the freezing point of alcohol is greater than that of gasoline.  What is the 

probability that the freezing point of gasoline is greater than that of alcohol?”) restored binary 

complementarity.  This finding suggests an asymmetry of attention to focal and complementary 

hypotheses in probability judgment.  Indeed, Idson, Krantz, Osherson & Bonini (2001) report 

examples in which judged probabilities of highly unfamiliar hypotheses and their complements 

sum to less than one while the judged probabilities of highly familiar hypotheses and their 

complements sum to more than one.  To accommodate these findings they advance a 

modification of support theory in which for a common domain of statements, the probability of 

attending to alternative hypothesis less than 1.  Judged probability is modeled as a weighted 

average of two terms: (1) the proportion of support for the focal hypothesis relative to the 

complementary hypothesis, as in support theory, and (2) the proportion of support for the focal 

hypothesis relative to a constant, reflecting complete complement neglect. 

       Yamagishi (2002, Study 4) provided participants with two personality profiles and 

asked them to judge the probability that one of the two described individuals was a member of 

a particular category assuming that one belonged to that category. A separate group evaluated 

the probability that the target individual was not a member of that category.  The profile that 

was both more similar and dissimilar to the category elicited probabilities that summed to 

slightly more than 100%.  In a subsequent study Yamagishi (2005; Study 5) determined 

through regression that affirmation probabilities tended to weight more highly features of the 

profile that were similar than dissimilar to the category, whereas negation probabilities tended 

to weight more highly features of the profile that were dissimilar than similar to the category.  

This result is consistent with a form of complement neglect in which feature similarity 
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(dissimilarity) as an indicator of support for the focal hypothesis when eliciting affirmation 

(negation) probabilities. 

McKenzie (1998) distinguishes between different cognitive representation of 

confidence in two hypotheses, A and B: (1) dependent confidence, in which the perceived truth 

of hypotheses are represented as alternative poles of a single scale—thus, an increases in 

confidence that hypothesis A is true necessitates a complementary decrease in confidence that 

B is true; and (2) independent confidence in which the perceived truth or falsity of each 

hypothesis is represented on separate scale—thus an increase in confidence that hypothesis A is 

true may or may not coincide with a change in confidence in hypothesis B.   He argues further 

that the representation of confidence can be influenced by the whether information concerning 

hypotheses is learned in a contrastive manner (e.g., participants learn which of two 

complementary diagnoses is correct for patients with various patterns of symptoms) or 

noncontrastive manner (e.g., participants learn whether a diagnosis is correct for patients with 

various patterns of symptoms, separately for each diagnosis). In a series of studies, McKenzie 

(1998) finds that contrastive learning leads to judged probabilities that more closely coincide 

with binary complementarity than noncontrastive learning, and a greater tendency to see 

evidence for (against) a focal hypothesis as evidence against (for) the complementary 

hypothesis.  For nonconstrastive learners, a pattern of symptoms implicating both diagnoses led 

to higher judged probabilities than a pattern that implicated neither.  Intererstingly, when 

probabilities were elicited in a symmetric way that explicit mentioned both the focal and 

complementary hypothesis (“How confident are you that the patient has puneria rather than 

zymosis?”) noncontrastive learners provided much more complementary probabilities 

compared to when probabilities were elicited in an asymmetric way that only mentioned the 

focal hypothesis (“How confident are you that the patient has puneria?”). 
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In this paper we have focused on violations of ordinal complementarity in relative 

likelihood judgment that follow from complement neglect in that response mode (i.e., 

!M /"M <1 ), and violations of procedure invariance that follow from the notion that 

complement neglect is more pronounced in relative than absolute likelihood judgment (i.e., 

!M /"M < !P /"P ).  However, the CWS model can accommodate violations of ordinal 

complementary in judged probability by relaxing the assumption that !P /"P !1 , and instead 

allowing !P /"P <1 .  Such patterns would be interpreted to reflect underweighting of 

complementary hypotheses in absolute likelihood judgment, which captures the spirit of the 

aforementioned theoretical accounts. 

Alternative measures of belief strength. 

In the present paper we have emphasized the contrast between relative likelihood 

judgment and absolute likelihood judgment.  Relative likelihood judgment has been 

operationalized by asking participants which hypothesis is “more likely” or “less likely” or by 

asking them to rank the relative likelihood of several hypothesis.  Absolute likelihood has been 

operationalized by asking participants to judge the probability for a focal event.  Windschitl 

(2000; Study 1) argues that binary complementarity of judged probabilities does not necessarily 

reflect binary complementarity of “internal perceptions of certainty.”  In particular, he found 

that participants who were asked to express their degree of certainty using a verbal scale (e.g., 

…“extremely likely “, “quite likely”, “fairly likely”…) provided ratings for complementary 

events that were less additive than did participants asked to evaluate the same events using 

numerical probabilities.  Moreover, verbal certainty for focal events increased as support for 

both focal and complementary hypotheses increased.  Although the interpretation of a verbal 

probability scale is open to question, this finding is consistent with the notion that probabilistic 
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thinking prompts more evenhanded attention to focal and complementary events, whereas more 

qualitative thinking prompts some degree of complement neglect. 

Indeed, when Windschitl (2000; Study 2) presented participants with a personality 

profile of Pat who was either a teacher or librarian but representative of neither, and a profile of 

Sally who was either a politician or journalist but representative of both.   Participants who 

exhibited binary complementarity in their probability judgments nevertheless tended to both 

prefer to bet that Sally was a politician than Pat a teacher and also bet that Sally was a 

journalist than Pat a librarian.  We suggest that this result may partly reflect complement 

neglect because betting choices naturally prompt consideration of which hypothesis is “more 

likely”, and partly a tendency to merely prefer betting on events when one feels more confident 

judging probability (cf. Heath & Tversky, 1991; Fox & Tversky, 1995; Fox & Weber, 2002).  

Interestingly, the bias toward betting on the more representative profile was significantly 

attenuated among participants who first judged probability then made betting choices 

(compared to those who completed the tasks in the opposite order), consistent with the notion 

that restoring symmetry can attenuate the familiarity bias as we saw in our Academy Awards 

example above. 

In a similar vein, Denis-Raj and Epstein (1994) observed that most undergraduate 

students in their sample preferred betting (to win $1) that they would draw a red jelly bean 

from a bowl containing 9 red jelly bean out of 100 than from a bowl containing 1 red jelly bean 

out of 10.  The authors note that “subjects commonly commented that in spite of he stated 

odds, they felt that they had a better chance of winning by picking from the bowl with the more 

winning (red) beans (p.823),” a sentiment that is certainly consistent with complement neglect 

in intuitive relative likelihood estimates. 

A hierarchy of axioms. 
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Theories of subjective probability characterize the relationship between events in the 

world and expressed beliefs.  If expressions of belief are to convey any meaning they must 

conform to semantic or at least syntactical rules that are shared by the judge and observer.  The 

present demonstration of belief reversals challenges the foundation of any reasonable axiomatic 

system of subjective probabilities. To elaborate this strong assertion we can examine a 

hierarchy of axioms on which various models of subjective probability rely. 

At the top of such a hierarchy are the strongest assumptions, the correspondence 

axioms: in an ideal world, probabilities relate precisely to propensity for events to obtain in the 

world.  For instance, we might hold people to be calibrated in their assessments: when Jack 

says he thinks there is a “30 percent chance” that an event will occur (e.g., “the Lakers will win 

the Championship this year”) the event should occur precisely thirty percent of the time.  

Decades of research on calibration of experts and novices (e.g., Lichtenstein, Fischhoff & 

Phillips, 1982; Griffin & Tversky, 1991; Liberman & Tversky, 1993; Moore & Healy, 2008)  

demonstrate that the perfect calibration assumption is routinely violated, and in most contexts 

people exhibit overconfidence in judging probabilities. 

More often, theories of subjective probability jettison the assumption that subjective 

probabilities are calibrated (i.e., semantic correspondence) and instead rely on the assumption 

that these beliefs accord with standards of coherence (i.e., are syntactically consistent).  The 

strictest of these models assume that subjective probability measures are additive so that if 

φ=∩ BA  then )()()( BPAPBAP +=∪ . Thus, when Jane says “the Lakers have a 30 percent 

chance to win the championship this year” and she says “the Celtics have a 20 percent chance 

to win the championship this year” we would also expect her to say that “there is a 50 percent 

chance that either the Lakers or Celtics will win the championship.”  However, there is ample 
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evidence that judged probabilities routinely exhibit subadditivity (Tversky & Koehler, 1994; 

Rottenstreich & Tversky, 1997; Fox, 1999), and choices under uncertainty also reflect this 

tendency (Tversky & Fox, 1995; Fox & Tversky, 1998).   

Noting such violations forces a retreat to a nonadditive measure of subjective 

probability, and several have been developed (for a review see, e.g., Dubois & Prade, 1988).  

Such measures generally preserve the ordinal properties of a probability measure.  For instance 

if Bob says “there is a 50 percent chance that the Lakers or Celtics will win the championship 

this year,” then we expect him to assign a smaller probability to the less inclusive possibility 

that the Lakers will win.  This basic assumption of monotonicity is sometimes violated, as 

when a conjunction of features (e.g., a socially conscious young political activist named Linda 

is “both a Bank Teller and a Feminist”) is judged to be more likely than one of these features 

alone (e.g., Linda is “a Bank Teller”; Tversky & Kahneman, 1983).  Moreover, recent studies 

have found systematic violations of the assumption of extensionality that is required to 

represent subjective probabilities as a function of Boolean mappings from a state space to a 

belief measure.  For instance, unpacking the description of an event (e.g. “precipitation next 

April 1 in Chicago”) into a disjunction of constituent events (“rain or snow or sleet or hail next 

April 1 in Chicago”) tends to increase the judged probability of that event (Rottenstreich & 

Tversky, 1997; for a review and for reversals see Sloman et al., 2004).  

 Given such failures of extensionality, some models have attempted to discard Boolean 

algebra and instead interpret subjective probabilities as a function of some other primitive.  As 

noted in the present paper, support theory (Tversky & Koehler, 1994; Rottenstreich & Tversky, 

1997; Brenner 2003) interprets subjective probability as a function of descriptions of events 

called “hypotheses.”  Such a framework can allow for subjective probabilities that exhibit 

unpacking effects.  In order to maintain some formal structure, support theory implicitly retains 
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weak axioms including ordinal complementarity and procedure invariance.  For instance, note 

that binary complementarity, ! !,! +   ! !,! = 1  , implies ordinal complementarity.   

The CWS model retains coherence by modeling judged probability as a constructed 

process in which more attention is paid to the focal hypothesis relative to the alternative in 

absolute likelihood judgment compared to relative likelihood judgment.  While this model 

introduces additional parameters that must be measured (relative weights in different response 

modes) it can accommodate the systematic patterns of belief reversals that we document in this 

paper.  In this respect the constructive process that we outline is akin to prior literature on the 

construction of preferences (e.g., Payne, Bettman & Schkade, 1999; Slovic, 1995; Lichtenstein 

& Slovic, 2006). 

Implications and Conclusions 

The present research may have interesting application to research on ambiguity 

aversion, the notion that decision makers prefer betting in situations where they have more 

knowledge or information concerning outcome probabilities (Ellsberg, 1961; Camerer & 

Weber, 1992).  This phenomenon has been attributed to a preference to bet in situations where 

one is more knowledgeable or competent (Heath & Tversky, 1991; Fox & Weber, 2002).  

Moreover, ambiguity aversion is more pronounced when in separate evaluations of more 

familiar and less familiar events than in joint evaluations (Fox & Tversky, 1995).  It is possible 

that this joint-separate evaluation effect is driven partly by beliefs rather than preferences.  That 

is, it may be that joint evaluation prompts an assessment of relative likelihood that favors more 

familiar events whereas separate evaluation prompts assessment of absolute likelihood which 

leads to more evenhanded consideration of evidence for familiar and unfamiliar events. 

 Failure to fully consider alternative events in relative likelihood judgment may also 

partially underlie the alternative outcomes effect (Windchitl and Wells, 1998).  In this 
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phenomenon, holding objective probability of a focal event constant (e.g., you hold 3 out of 10 

tickets to a raffle), subjective feelings of confidence increase when the most likely alternative 

event is less likely (e.g., seven other people each hold one ticket) than when the most likely 

alternative event is more likely (e.g., one other person holds seven tickets).  Meanwhile, judged 

probabilities are unaffected by this manipulation.  It may be that many nonnumeric assessments 

of uncertainty and expressions of concern tend entail comparisons between focal outcome and 

strongest alternative, whereas numerical probabilities reflect more thorough consideration of 

the complementary hypothesis. 

 The present research also has practical implications.  We have found that judged 

probabilities reflect a more evenhanded consideration of evidence for and against the 

hypotheses under evaluation than does a direct assessment of relative likelihood.  Thus, when 

assessing relative belief, one ought to solicit or assess absolute rather than relative likelihood 

judgments.  This disparity is especially pronounced when the judge has substantially different 

degrees of knowledge or information concerning events.  For instance, when asking a doctor 

for an assessment of the relative effectiveness of an established treatment and an experimental 

treatment, it would be wiser to separately ask for an assessment of likelihood that each will be 

successful than to ask which one is “more likely” to cure the disease. 
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Appendix 1: 

Deriving Equation 4 from the CWS Model and Complement Neglect 

 

Assume the CSW model (Eq.3),  

LH i≥  iff  )(ln)(ln)(ln)(ln LsLsHsHs iiii βαβα −≥− . 

Also assume support theory for absolute likelihood, and complement neglect for relative 

likelihood: 

1// =≤ PPmm αβαβ  

Now define the ratio of weight to the alternative to focal hypotheses, !M ! "m /#m , where 

10 ≤< mκ , so that we get: 

LH m≥  iff )(ln)(ln)(ln)(ln LsLsHsHs mm κκ −≥− . 

Noting that cB
ABcA lnlnln =− , and restricting attention for the moment to the right-hand 

inequality, we get:  mm Ls
Ls
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Hs

κκ )(
)(

)(
)(
≥    so that 
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⎥
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Now, define total support for the highly familiar and less familiar domains as follows: 

)()( HsHsh +≡ , )()( LsLsl +≡ , where h ≥ l. 

Also, define p and q as the proportion of support favoring the focal hypothesis for the high and 

low familiarity domains, respectively,
)()(

)(
HsHs

Hsp
+

≡ , )()(
)(
LsLs

Lsq
+

≡
,
 (note that LH P≥  iff  

qp ≥ ).  We get 
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Finally, define the ratio of total support in the low-familiarity to high familiarity domains, 

hl /≡σ , where by definition 10 ≤< σ .  We get: 
m

q
p

q
p

κ

σσ ⎥
⎦

⎤
⎢
⎣

⎡

−

−
≥

)1(
)1( , so that adding the first 

condition back we get: 

(5a) LH m≥ iff 
mm q

q
p
p

κκ σ
σ
])1[()1( −

≥
− . 

Note that these conditions will be met whenever p ≥ q (i.e., LH P≥ ), and sometimes when q < p (i.e., 

HL P≥ ). 

Conditions for complementary hypotheses can be generating by replacing p with (1-p) 

and q with (1-q), so that we get: 

(5b) LH m≥ iff 
mm q

q
p
p

κκ σ
σ
][
)1()1( −

≥
−

. 

Note that these conditions will be met whenever q ≥ p (i.e., LH P≥ ), and sometimes when p 

< q (i.e., HL P≥ ). 

Returning to Equation (5a), note that if κM = 1, then σ cancels out of the right-hand 

term, and we simply have an expression of odds on both sides, or: 

 LH m≥  iff LH p≥ . 

Note that if σ =1, then the right-hand term becomes 

mm q
q

p
p

κκ )1()1( −
≥

− ,
 

which is trivial because p ≥ q iff (1-p) ≤ (1-q) iff (1-p)k ≤ (1-q)k for all k, so that again, 

 LH m≥ iff LH p≥  

More generally, when σ < 1 and κM < 1 we obtain the following belief reversals: 
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(4a) LH m≥ and HL P≥ whenever 
mm q

q
p
p

κκ σ
σ
])1[()1( −

≥
−

 and pq ≥ , 

in which case we also get LH m≥ , for a second belief reversal, and 

(4b) LH m≥ and HL P≥ whenever 
mm q

q
p
p

κκ σ
σ
][
)1()1( −

≥
−  and qp ≥   (i.e. 1-q ≥ 1-p), 

in which case we also get LH m≥ , for a second belief reversal. 
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Table 1A.  Violations of Ordinal Complementarity 
(adapted from Fox & Levav, 2000) 

 

 
Study 

 
Elicitation 

mode 

 
)Pr( LH i>  

 
n 

 
)Pr( LH i>  

 
n 

)Pr( LH i> + 

)Pr( LH i>  

 
z 

1. Duke Sports More likely .75 69 .44 66 1.19 2.37 
2. Mutual Funds More likely .38 115 .73 113 1.11 1.79 
3. Corporate Theft More likely .41 71 .79 73 1.20 2.65 
4. Temperatures More likely 

Less likely 
.50 
.50 

84 
82 

.63 

.62 
81 
86 

1.13 
1.12 

1.70 
1.58 

5. Academy Awards More likely 
Less likely 

.76 

.80 
25 
30 

.48 

.57 
31 
30 

1.24 
1.37 

1.94 
3.18 

 
 

Table 1B.  Violations of Procedure Invariance 
(adapted from Fox & Levav, 2000) 

 
Study 

 
Elicitation 

mode 

 
)Pr( LH i>  

 
n 

 
)Pr( LH i>  

 
n 

)Pr( LH i> + 

)Pr( LH i>  

 
z 

6. Law Case More likely 
Probability 

.66 

.49 
62 
55 

   1.88 

7. Politics More likely 
Probability 

.64 

.36 
22 
21 

.76 

.73 
21 
22 

1.40 
1.09 

2.89 
0.64 

8. College Basketball More likely 
Probability 

.59 

.24 
79 
73 

.74 

.64 
76 
77 

1.33 
0.88 

4.41 
-1.62 

 
 
 
 
Note.  Tables 1A and 1B are adapted from Table 1 in Fox & Levav (2000) and present a 
summary of the authors’ findings. Table 1Apresents examples of violations of ordinal 
complementarity.  Table 1B presents violations of procedure invariance. For both tables, the 
first column lists the number and topic of the study.  The second column lists the elicitation 
mode.  The third column lists the proportion of respondents rating the hypothesis for which a 
high amount of evidence can be recruited (H) above the hypothesis for which a low amount of 
evidence can be recruited (L).  The fourth column lists the sample size on which that 
proportion is based.  The fifth column lists the proportion of respondents rating the 
complement of the H hypothesis ( H ) above the complement of the L hypothesis ( L ).  The sixth 
column lists the sample size on which that proportion is based.  The seventh column reports the 
summation of respondents ordering Hand its complement above L and its complement.  A sum 
that is significantly greater than unity indicates a bias toward H.  The final column lists the z 
score of the difference between the proportions reported in the third column and one minus the 
proportion reported in the fifth column (for details see the original source). 
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Table 2.  Restoring Symmetry. 
 

 
Condition 

 
Elicitation 

mode 

 
)Pr( LH i>  

 
n 

 
)Pr( LH i>  

 
n 

)Pr( LH i> + 

)Pr( LH i>  

 
z 

 
Control 

 
More 
likely 
 

 
.72 

 

 
25 
 

 
.70 

 
27 

 
1.42 

 
2.83 

Complement 
Salient 

More 
likely 
 

.39 
 

28 .52 
 

27 
 

.91 
 

.015 

 
 
Note.  The first column lists the condition and the second column lists the 
elicitation mode.  The third column lists the proportion of respondents rating the 
more familiar hypothesis (H) above the less familiar hypothesis (L).  The fourth 
column lists the sample size on which that proportion is based.  The fifth column 
lists the proportion of respondents rating the complement of the H hypothesis,H , 
above the complement of the L hypothesis ( L ).  The sixth column lists the sample 
size on which that proportion is based.  The seventh column reports the 
summation of respondents ordering H and its complement above L and its 
complement.  A sum that is significantly greater than unity indicates a bias 
toward H.  The final column lists the z score of the difference between the 
proportions reported in the third column and one minus the proportion reported 
in the fifth column. 
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Table 3.  Mean weights and t-statistics of differences, computed for each participant using 
ordered logistic regression.14 

 
 Relative Likelihood 

 
Absolute Likelihood 

 
Study

 
Focal 
weight 

Complementary 
weight 

t-
value 

Focal 
weight 

Complementary 
weight 

t-
value 

ACC 14.64 11.19 4.79 17.84 17.68 0.25 

NCAA 25.93 22.08 2.60 22.22 20.97 0.83 

 

Note.  Focal weight refers to mean logistic regression weight, averaging over participants, on 
the focal hypotheses; alternative mean weight to weight on the complementary hypothesis.  T-
values refer to t-statistics for the paired sample t-test of a difference in means.   
 

Table 4.  Mean weights computed from linear regression. 
 

 Likelihood 
 

Probability 
 

Study
 

Focal 
weight 

Alternative 
weight 

t-
value 

Adj 
R2 

Focal 
weight 

Alternative 
weight 

t-
value 

Adj 
R2 

ACC 6.52 5.12 >1000 .81 38.08 36.57 2.01 .90 

NCAA 10.62 8.80 >1000 .65 60.27 58.37 1.50 .71 

Note.  Focal weight refers to mean linear regression weight, averaging over participants, on 
the focal hypotheses; alternative mean weight to weight on the complementary hypothesis.  T-
values refer to t-statistics for the paired sample t-test of a difference in means.  Adj-R2 refers to 
the adjusted R-square statistic for the designated regression. 

 
 
 

 
 
  

                                                             
14 We used ordered logistic regression to analyze, for the NCAA study, 670 ties out of 6336 cases for relative 
likelihood, 347 ties out 6336 cases for probability; for ACC study, 1756 out of 18432 cases for relative likelihood, 
676 ties out of 18432 cases for probability. 
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Table 5.  Joint Versus Separate Evaluation of Probability 
 

 
Evaluation Mode Jerry 

(MCAT = 29, GPA = 3.81) 
David 

(MCAT = 38, GPA = 3.55) 
 

Separate 
(n = 29, 24) 

 
52.7  

(25.2) 

 
51.8  

(22.4) 
 

Joint 
 

45.7 
 

63.8 
(n = 27) (25.5) 

 
 
Note.  The first column lists the evaluation mode and sample size.  The second and third columns list mean judged 
probabilities (standard deviations in parentheses). 
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Figure 1A 
Violations of Ordinal Complementarity 

 
 

 
 
Data presented are proportions of participants in each condition indicating that the highly 
familiar hypothesis (H or ~H) is more likely (Mu) or the less familiar less likely (Lambda) to 
occur than the less familiar hypothesis (L or ~L, respectively).  Numbers 1-5 indicate study 
numbers from Fox & Levav (2000).  Note that in each case the sum of the bars exceeds 1, 
representing a violation. 
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Figure 1B 

Violations of Procedure Invariance 
 
 

 
 
Data presented are proportions of participants in each condition indicating that the highly 
familiar hypothesis (H or ~H) is more likely (Mu) or has a higher probability (P) than the less 
familiar hypothesis (L or ~L, respectively).  Numbers 6-7 indicate Study numbers from Fox & 
Levav (2000).   
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Figure 2 
Restoring Symmetry 

 

 
 
Proportion of participants saying one of a group of Best Picture nominees (high familiarity 
hypotheses) or Best Foreign Film nominees (low familiarity hypothesis) is more likely to win.  
These data are presented for the condition in which this question is the first item on the survey 
(Control) or follows a question about one’s preferences for which film wins in each award 
category, thereby making the complementary hypothesis more salient (Complement Salient).  
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Figure 3 
Belief Reversal Contours Implied by the CWS Model 

 

   
κM = 0.2, σ = 0.2   κM = 0.2, σ = 0.5   κM = 0.2, σ = 0.8 
 

   
κM = 0.5, σ = 0.2   κM = 0.5, σ = 0.5   κM = 0.5, σ = 0.8 
 

   
κM = 0.8, σ = 0.2   κM = 0.8, σ = 0.5   κM = 0.8, σ = 0.8 
 
 
The panels above illustrate the instances in which the CWS model predicts belief reversals.  In 
each panel the y-axis represents p, the proportion of support of the high-familiarity domain that 
favors the focal hypothesis; the x-axis represents q, the proportion of support of the low-
familiarity domain that favors the focal hypothesis.  Thus, points above the identity are regions 
where LH P≥  (and HL P≥ ), and points below the identity are regions where HL P≥  (and 

LH P≥ ).  Columns indicate different levels of σ, the ratio of total support for the less familiar 
to more familiar hypotheses.  Rows indicate different levels of κM, the ratio of weight afforded 
the alternative to focal hypotheses.  Contours are defined by inequalities (5a) and (5b). In each 
panel the lower lip is the region in which HL P≥  and LH m≥  and the upper lip is the region in 
which HL P≥  and LH m≥  (violating procedure invariance); both lips represent the region in 
which LH m≥  and LH m≥  (violating ordinal complementarity). 
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