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Strength of Evidence, Judged Probability, and Choice
Under Uncertainty
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This paper traces, within subjects, the relationship between assessed strength of
evidence, judgments of probability, and decisions under uncertainty. The investiga-
tion relies on the theoretical framework provided by support theory (Tversky &
Koehler, 1994; Rottenstreich & Tversky, 1997), a nonextensional model of judg-
ment under uncertainty. Fans of professional basketball (N = 50) judged the proba-
bility that each of eight teams, four divisions, and two conferences would win the
National Basketball Association championship. Additionally, participants rated the
relative strength of each team, judged the probability that a given team would win
the championship assuming aparticular pairing in thefinals, priced prospects contin-
gent on the winner of the championship, and made choices between chance pros-
pects. The data conformed to the major tenets of support theory, and the predicted
relationships between assessed strength of evidence, hypothetical support, judged
probabilities, and choices under uncertainty also held quite well. 0 1999 Academic
Press

Nearly three decades of psychological research on judgment under uncer-
tainty has demonstrated convincingly that intuitive judgments of probability
systematically violate the calculus of chance (see, e.g., Kahneman, Slovic, &
Tversky, 1982). In particular, different descriptions of the same event often
give rise to systematically different judgments (e.g., Fischhoff, Slovic, &
Lichtenstein, 1978), and the judged probability of the union of digoint events
isgenerally smaller than the sum of judged probabilities of those events (e.g.,
Teigen, 1974).

The tendencies to assign higher probabilities to more specific events or
more detailed descriptions of events have generally been attributed to heu-
ristic processes of representativeness and availability (see, e.g., Tversky &
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Kahneman, 1983). Recently Amos Tversky and his students (Tversky &
Koehler, 1994; Rottenstreich & Tversky, 1997) have developed a more for-
mal model of judgment under uncertainty called support theory that accom-
modates such patterns and provides the theoretical foundation for the present
investigation. In particular, support theory conceives of judged probability
asthe balance of evidence favoring the hypothesisin question and the theory
provides a means of predicting judged probabilities from raw assessments
of evidence strength. Moreover, it seems that choices under uncertainty can
be predicted from judged probabilities that are consistent with support theory
(see Fox & Tversky, 1998). However, up to this point there have been no
studies that trace the relationship between assessed strength of evidence,
judged probability, and choices under uncertainty. The primary purpose of
the present article is to provide such an investigation, within subjects, and
to simultaneously test the major tenets of support theory using a population
of experts. | next turn to a discussion of the major axioms and implications
of support theory.

Key Tenets of Support Theory

In support theory probability is not attached to events, as it is in other
models, but rather to descriptions of events, called hypotheses; hence, two
descriptions of the same event may be assigned different probabilities (i.e.,
the model is nonextensional). Support theory assumes that each hypothesis
A has a nonnegative support value s(A) corresponding to the strength of the
evidence for this hypothesis. The judged probability P(A,B) that hypothesis
A rather than B holds, assuming that one and only one of them obtains, is
given by

PAB) = A

~ S(A) + s(B) @)

Hence, judged probability isinterpreted asthe support of the focal hypothesis
A relative to the alternative hypothesis B. The theory further assumes that
(i) unpacking a description of an event A (e.g., homicide) into digoint com-
ponents A, [ A, (e.g., homicide by an acquaintance, A;, or homicide by a
stranger, A;) generally increases its support, and (ii) the sum of the support
of the component hypothesesis at |east aslarge as the support of their explicit
digunction, so that

S(A) = s(AL O A) = s(Ar) + s(Ar), 2

provided that (A;, A,) is recognized as a partition of A. The rationale for
Eqg. (2) is that (i) unpacking may remind people of possibilities that they
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might have overlooked, and (ii) the separate evaluation of hypotheses tends
to increase their salience and enhance their support.

Key Implications of Support Theory

There are three major implications of support theory. First, Eq. (1) implies
binary complementarity: P(A,B) + P(B,A) = 1. For instance, if the Atlanta
Hawks and Boston Celtics are playing each other on a particular night, the
judged probability that Atlantarather than Boston wins and the judged proba-
bility that Boston rather than Atlanta wins should sum to 1. Second, for finer
partitions, Egs. (1) and (2) imply subadditivity: the judged probability of A
islessthan or equal to the sum of judged probabilities of its disjoint compo-
nents. For example, the judged probability that Atlanta beats Boston should
be less than or equal to the judged probability that Atlanta wins by 1 to 10
points plus the judged probability that Atlanta wins by more than 10 points.!
Binary complementarity and subadditivity have been confirmed in severa
studies reviewed by Tversky and Koehler (1994). They have been replicated
among experienced physicians (Redelmeier, Koehler, Liberman, & Tversky,
1995), lawyers (Fox & Birke, 1998), and options traders (Fox, Rogers, &
Tversky, 1996). Similar patterns have al so been observed in decision making
under uncertainty. In particular, there is evidence that unpacking the descrip-
tion of an event can increase subjects’ willingness to pay for insurance poli-
cies (Johnson, Hershey, Meszaros, & Kunreuther, 1993; see also Wu & Gon-
zalez, 1998) and that subadditivity of judged probabilities is associated with
subadditivity in subjects’ pricing of prospects contingent on sporting events,
economic indicators, and other events (Tversky & Fox, 1995; Fox, Rogers &
Tversky, 1996; Fox & Tversky, 1998; Fox, 1998).

It is convenient to define the probability (odds) ratio R(A,B) = P(A,B)/
P(B,A). Onecan easily verify that Eq. (1) yieldsathird implication of support
theory, called the product rule:

R(A,C)R(C,B) = R(A,D)R(D,B), (3

provided all probabilities are nonzero and al four hypotheses are pairwise
exclusive. For instance, suppose that R(A,B) is the odds that team A rather
than team B leads the league in scoring this season, assuming that one of
these teams will lead the league. Equation (3) implies that the product of
the odds for Atlanta against Chicago and Chicago against Boston equals the
product of the odds for Atlanta against Denver and Denver against Boston.

L In addition, Egs. (1) and (2) imply that the judged probability of the explicit disunction
of component hypotheses lies between these values. | will briefly address this issue in the
discussion; see also Rottenstreich and Tversky (1997).
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To see the necessity of the product rule, note that according to Eq. (1) both
sides of Eq. (3) equa s(A)/s(B).2

Note that each of these implications of support theory has an important
role in the interpretation of probability as normalized support (Eg. (1)). Bi-
nary complementarity is necessary to establish that support for a hypothesis
remains the same whether the hypothesisisin the foreground (focal) or back-
ground (alternative). Subadditivity of judged probabilities is necessary to
establish that separate evaluation of component hypotheses increases their
support (Eq. (2)). Finaly, the product rule is necessary to establish that sup-
port for a hypothesis is independent of the particular (alternative or focal)
hypothesis against which it is being compared.

Srength of Evidence, Judged Probability and Choice under Uncertainty

Although the most important tenets of support theory have been empiri-
cally validated separately among different groups of subjectsin various stud-
ies, there has not yet been a thorough within-subjects test of the implications
and assumptions of the theory, nor has there been a study that directly relates
assessed strength of evidence for hypotheses to willingness to act on those
hypotheses. The purpose of the present article is to provide such a compre-
hensive investigation using expert subjects. In particular, | set out to test the
predictions of binary complementarity, subadditivity, and the product rule
and then trace the relationship between raw judgments of evidence strength
(5), hypothetical support (s), judged probability (P), and choices under uncer-
tainty (C). Figure 1 provides a schematic illustration of the relationship be-
tween these variables that will be elaborated in subsequent sections of this
paper.

In order to accomplish thisanalysis, | recruited fans of professional basket-
ball and asked them to make several judgments and decisions concerning
the winner of the National Basketball Association (NBA) playoffs. This do-
main has several desirable features. (1) basketball fans have considerable
expertise predicting outcomes of games and aretypically comfortable betting
on these outcomes; (2) the hierarchical structure of conferences, divisions,
and teams that could win the tournament provides a test of binary comple-
mentarity and several tests of subadditivity; (3) basketball fans are comfort-
able judging the relative strength of teams, which provides a suitable proxy
for strength of evidence that a team will win the tournament; and (4) the
tournament structure provides a natural means of eliciting pairwise condi-
tional probabilities (‘*assuming teams A and B reach the finals, what is the

21f we add a related condition
R(AB) = R(AD)R(D,B),

then binary complementarity and the product rule are both necessary and sufficient for Eq.
(1). See Rottenstreich and Tversky (1997).
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FIG. 1. A schematic representation of the relationship between variables. Note that S(A)
refers to assessed strength of evidence for hypothesis A; s(A) refers to hypothetical support
for hypothesis A; P(A,A) refers to judged probability of hypothesis A against its complement;
C(x,A) refers to the certainty equivalent for the prospect that pays $x if and only if hypothesis
A obtains; P(A,B) refersto the judged probability of hypothesis A against hypothesis B, assum-
ing either A or B obtains (but not both); and chance refers to choices between chance prospects
that are used to parameterize the utility function for monetary gains. The parameters k (the
strength-support scaling parameter), w (the global weight for discounting support of aternative
hypotheses), and o (the utility function parameter), listed below the arrows, are required to
estimate the variable to the right of the corresponding arrow from the variable to the left of
that arrow.

probability that team A wins?’), which are necessary to scale support from
strength ratings.

(i) From assessed strength of evidence to support. Previous studies have
shown that it is possible to predict probability judgments from direct assess-
ments of evidence strength (Tversky & Koehler, 1994; Koehler, 1996; see
also Brenner & Koehler, 1999). To see how strength and support are related,
note that in support theory, the support function, s, is derived from probabil-
ity judgments. Let S(A) be the rating of the strength of evidence for hypothe-
sis A. First, it seems reasonable to assume that the probability of the focal
hypothesis will be judged to be at least one-half if and only if the evidence
favoring the focal hypothesis is at least as strong as the evidence favoring
the alternative hypothesis. For instance, suppose that $(A) is the judged
strength of a given sports team. In this case, we assume that the judged
probability that team A beats team B will be at |east one-half if and only if the
assessed strength of team A is greater than or equal to the assessed strength of
team B. In the support theory framework, this assumption suggests that raw
strength ratings and hypothetical support (derived from judged probabilities)
are related monotonically:

S(A) = §(B) iff s(A) = s(B). 4
Second, it seems reasonable to assume that the higher the ratio of judged

strength of thefocal hypothesisto judged strength of the alternative hypothe-
sis, the higher the odds assigned to the focal hypothesisagainst the alternative



172 CRAIG R. FOX

hypothesis (derived from judged probabilities). Suppose again that S(A) is
the judged strength of a given sports team. We assume that the ratio of the
strength ratings of team A to team B will be greater than or equal to the ratio
of strength ratings of team C to team D if and only if the odds assigned to
team A beating team B are greater than or equal to the odds assigned to team
C beating team D (derived from pairwise conditional probability judgments).
In the support theory framework, this condition suggests that strength ratios
and support ratios are related monotonically:

§(A)/3(B) = §(C)/3(D) iff S(A)/S(B) = S(C)/s(D). (5)

It can be shown that if these two conditions hold and both scales are de-
fined on, say, the unit interval, then there exists a constant k > 0, such that
the two measures of support are related by a power transformation of the
form s(A) = S(A)* (for a proof, see Tversky & Koehler, 1994, theorem 2).
Using Eg. (1), assuming P(A,B) > 0 for al A, B, and defining R(A,B) as
before, we get

R(A,B) = s(A)/s(B)
[S(A)/5(B)].

Taking the logarithm of both sides of the equation yields
In R(A,B) = k In[S(A)/3(B)]. (6)

Hence the parameter k can be estimated from probability judgments and team
strength ratings using linear regression, which will alow us to relate team
strength ratings to the hypothetical support scale.

The psychological interpretation of the scaling parameter k is an interest-
ing question. Note that as k approaches zero, all probabilities converge to
one-haf (i.e., R(A,B) goesto 1); as k increases, probabilities diverge to zero
(when the strength of evidence for the focal hypothesis is less than the
strength of evidence for the alternative hypotheses) and 1 (when the strength
of evidence for the focal hypothesis is greater than the strength of evidence
for the alternative hypothesis). Hence, k might be interpreted as an index of
an individual’s sensitivity to differences in assessed support for the focal
versus alternative hypothesis when judging probabilities.

(ii) From support to judged probability. Equation (6) uses pairwise condi-
tional probability judgments (e.g., the probability that team A wins the cham-
pionship assuming that team A and team B are in the finals) to determine
the relationship between strength of evidence and hypothetical support. Us-
ing the parameter k obtained from this analysis we can now relate strength
of evidence to the ssimple judged probability that a particular team wins the
championship and simultaneously test for subadditivity of support. Recall
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that according to Eq. (1), the probability that a particular team winsthe cham-
pionship depends on the support for the hypothesis that the team wins and
the support for the hypothesis that the team does not win. Although we can
use team strength ratings as a proxy for support for the hypothesis that a
particular team wins, there is no obvious meansto elicit raw support for the
hypothesis that a particular team does not win. However, following Tver-
sky & Koehler (1994; see also Koehler, Brenner, & Tversky, 1997; Bren-
ner & Koehler, 1999), we can estimate support for the hypothesis that team
A fails to win as a weighted sum of the support of al other teams winning
the championship;

S(A) = w; > S(A),
=
where wy, called the global weight, is less than or equal to 1, as can be
derived from EqQ. (2). Hence, the global weight provides an index of the
general extent to which the support for each alternative elementary hypothe-
sis(e.g., that each team other than the Chicago Bulls wins the championship)
is discounted when packed into aresidua hypothesis (e.g., that the Bulls do
not win the championship). Substituting the above eguation into the Eq. (1),
and rearranging terms, we get

- > siA)
1- P(Ai ,Ai) = Wi j=1, j#
PAA) T sA)

If we assume that wj, is approximately constant for all i and substitute $* for
S, we get

_ PREGE
1 - P(AA) _ WK]:l,jr.i
P(A A) EOK

SO We can estimate w; from linear regression using simple judged probabili-
ties, raw strength ratings, and values of k obtained from the previous analysis.
This analysis will provide a more direct test of the subadditivity of support
and also allow us to predict judgments of the probability that a particular
team will win the championship from strength ratings of all teams.

(iii) From judged probability to choice under uncertainty. Now that we
have related strength to judged probability, we can relate it to a measure of
willingness to act under uncertainty by constructing prospects (x,A) that of-

: ()
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fer $x if team A wins the NBA championship and nothing otherwise. The
attractiveness of such a prospect can be measured by €liciting a person’s
certainty equivalent for that prospect, C;, which is the sure amount of money
that the decision maker finds equally attractive to receiving $x if team A
wins the tournament (and nothing otherwise). According to expected utility
theory,

u(G) = p(A)u(x),

where p is an additive subjective probability measure and u(X) is the utility
(i.e., subjective value) of receiving $x. It can be shown that the standard
economic model of decision making (expected utility theory with risk aver-
sion) implies that the certainty equivalent for the prospect formed from an
event must be at least as large as the sum of certainty equivalents for pros-
pects formed by partitioning that event (i.e., certainty equivalents should be
superadditive over events).® For instance, if | price a prospect that offers
$100 if the Chicago Bulls win their next game by 1-10 points at $20, and
| price a prospect that pays $100 if the Bulls win by more than 10 points at
$25, the standard model impliesthat | should price a prospect that pays $100
if the Bulls win at no less than $45. This result depends on the assumption
of risk aversion, and the assumption that subjective probabilities are additive.
However, if subjective probabilities are allowed to be subadditive, as support
theory predicts, then this condition will often be violated. For instance, if |
perceive the probability that the Bulls win by 1-10 points to be .30 and the
probability that the Bulls win by more than 10 pointsto be .40, but | perceive
the probability that the Bulls win to be only .55 (<.30 + .40), then | might
price the third prospect lower than the sum of the first two prospects. Such
failures of the standard model are especially likely when concavity of the
utility function is not very pronounced and the target event is partitioned
into many components.

To predict certainty equivalents from judged probabilities, we replace the
additive subjective probability, p(A), with the judged probability, P(A A),
so that we get*

u(C) = P(ALA)U(X).

Previous studies (e.g., Tversky, 1967; Tversky & Kahneman, 1992) have
indicated that the utility function for small to moderate gains can be approxi-
mated by a power function of the form u(x) = x%, a > 0, which gives us

% For a proof and fuller discussion, see Fox and Tversky (1998).

4 Another approach would beto weight support theory probabilities by the S-shaped function
of prospect theory (Tversky & Kahneman, 1992). For simplicity | omit this second stage here,
but will take up the issue in the discussion section.
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C = [P(AA) ™ X ®)

Hence, the certainty equivalents for the prospect that pays $x if hypothesis
A obtains (and nothing otherwise) can be predicted from the judged probabil-
ity that hypothesis A; obtains and the utility parameter a.

(iv) From assessed strength of evidence to choice under uncertainty. To
predict certainty equivalents directly from strength ratings, note that ac-
cording to support theory

S(A)

PAR T S+ sa)

for every teami. If we assume that s(A) + s(A) is approximately constant
for dl i, then

P(AA) _S(A)

= : 9)
PALA)  s(A)

u(C) _ PALA) u(¥) _ S(A)
u(G) PAAIUX  S(A)

We can estimate support from assessed strength of evidence using the param-
eter k obtained from the foregoing analysis, and we can estimate a power
utility function using the parameter a as before. Hence, the ratio of certainty
equivalents can be predicted from the ratio of assessed strength of corre-
sponding teams:

c@ _ [é(A)]e
C(B) §B) |’

where C(A) isthe certainty equivalent of the prospect that pays $160 if team
A wins the NBA championship and 6 = k/a as previously defined. Taking
the logarithm of both sides of this equation yields

In[C(A)] ~ 0 InF'(A)], (10)
C(B) S(B)

so that 8 can be estimated by linear regression. Hence, relative certainty
equivalents for bets on two different teams can be predicted from judgments
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of the relative strength of those teams and independent estimations of the
parameters k and a.

We have now seen that support theory provides a parsimonious framework
for tracing the relationship between assessed strength of evidence, hypotheti-
cal support, judged probability, and choice under uncertainty. | now turn to
a detailed description of an experiment in which the integrity of this frame-
work is tested.

EXPERIMENT

Method

| recruited fans of professional basketball during the 1995 NBA playoffs and asked them
to make several judgments and decisions concerning who wins the championship.

Participants. The participantsin this study were 50 students at Northwestern University (46
men, 4 women; median age, 20 years) who responded to flyers calling for fans of professional
basketball to take part in a study of decision making. Participants received $10 for completing
one 60-min session and were told that some participants would be selected at random to play
one of their choices for real money (up to $160). Subjects indicated that they had watched
or listened to a large number of NBA games (median, 25) during the regular season.

Procedure. The experiment was run using a computer. All subjects were run on the same
day, during the beginning of the quarterfinals. At the time of the study, eight teams remained
(Chicago, Indiana, Boston, Orlando, Phoenix, Los Angeles, San Antonio, and Houston) repre-
senting four divisions (Midwestern, Eastern, Pacific, and Central) which in turn compose two
conferences (Eastern and Western).®

The first phase was designed to estimate subjects’ certainty equivalents for uncertain pros-
pects. Prospects offered to pay $160 if a particular team, division, or conference would win
the 1995 NBA championship. For example, atypical prospect would pay $160 if the Chicago
Bulls win the 1995 NBA championship. Each trial involved a series of choices between a
prospect and an ascending series of sure payments (e.g., receive $40 for sure). Prospects were
presented in an order that was randomized for each subject. Certainty equivalents wereinferred
from two rounds of such choices. The first round consisted of nine choices between the pros-
pect and sure payments that were spaced evenly from $0 and $160. After completing the first
round of choices, anew set of nine sure payments was presented, spanning the narrower range
between the lowest payment that the subject had accepted and the highest sure amount that the
subject had rejected (excluding the endpoints). The program enforced dominance and internal
consistency. For example, the program did not allow arespondent to prefer $30 to a prospect
and also prefer the same prospect to $40. The program allowed subjects to backtrack if they
felt they had made a mistake in the previous round. The certainty equivalent of each prospect
was determined by linear interpolation between the lowest value accepted and the highest
value regjected in the second round of choices. This interpolation yielded a margin of error of
+$1.00 for the $160 prospects. Note that although the analysis is based on certainty equiva
lents, the data consisted of a series of choices between a given prospect and sure outcomes.
Thus, respondents were not asked to generate certainty equivalents; these values were inferred
from choices.

The second phase was designed to estimate the shape of the utility function for monetary
gains (i.e., the mapping from dollars to subjective value). Subjects were presented with a

® The nested structure of teams, divisions, and conferences is displayed in Figs. 2 and 4.
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““fixed”” prospect of the form (.25, $a; .25, $b; .50, $0) and a ‘‘variable’’ prospect of the
form (.25, $c; .25, x; .50, $0). These prospects were presented at ‘‘ spinner games'’ that paid
depending on which region of a circle a spinner was to land. In a given trial, the values of
a, b, and ¢ were fixed, while the value of x varied. The initial value of x was set so that the
expected value of the prospects was equal. Eight such pairs of prospects were constructed,
presented below in Table 3, with the analysis of the data. Subjects were asked to indicate
their preference between the bets. If a subject began by indicating a preference for the fixed
prospect, the value of x increased by $16 each time they did so; if a subject began instead
by indicating a preference for the variable prospect, the value of x decreased by $16 each
time they did so. When a subject’ s preference switched from the fixed prospect to the variable
prospect or the variable to the fixed, the change in x reversed direction and the increment was
cut in half (i.e., from $16 to $8, from $8 to $4, and so forth) until the increment was $1. This
process was repeated until the subject indicated that they found the two prospects equally
attractive.

The third phase asked subjects to estimate the probability of each uncertain target event
(i.e., that a particular team, division, or conference would win the NBA playoffs). The fourteen
events were presented in an order that was randomized for each subject. On each trial, subjects
could respond by typing in a number either larger than 0 and smaller than 100, or by clicking
and dragging a ‘‘dlider’” on avisual scae labeled from O to 100.

The fourth phase asked subjects to estimate the probability that a particular team would
win the NBA championship, supposing that two particular teams made the finals. Because
four teams from each of two conferences were represented, 16 matchups were possible. Each
of these sixteen possihilities was presented to subjectsin arandom order, with the team names
in each pairing also presented in arandom order. Moreover, the winning team in each possible
pairing was selected at random from the two possibilities. For example, one trial might ask,
‘*Suppose that the Los Angeles Lakers play the Chicago Bulls in the NBA finas. What do
you think the probability is that the Los Angeles Lakers win?’ The elicitation mode was
otherwise identical to the previous phase.

The fifth phase of the study required subjects to rate the strength of each of the teams on
a 100-point scale. The team names were listed together on the same page in a random order,
and subjects clicked the mouse on a visua scale to indicate their judgment of the strength of
that team. Following Koehler (1996), instructions were as follows:

First, choose the team you believe is the strongest of the eight, and set that team’s
strength to 100. Assign the remaining teams ratings in proportion to the strength of
the strongest team. For example, if you believe that a given team is half as strong
as the strongest team (the team you gave 100), give that team a strength rating of
50.

In addition to these five phases, subjects were asked to make a series of
choices from which certainty equivalents for chance prospects were esti-
mated. Results of this task will not be discussed here.

RESULTS

Subadditivity and Binary Complementarity

The median judged probability for each target event is listed in Fig. 2,
which shows that the sum of these probabilities is close to 1 for the two
conferences, nearly 1.5 for the four divisions, and more than 2 for the eight
teams. This pattern is consistent with the prediction of support theory that
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Conference Division Team
.40
Chicago
.39
Central
Indiana
25
.52
Eastern
35
Orlando
Atlantic
40
NY
24
.05
LA
25
Pacific
Phoenix
.30
Western
.50
40
SA
Midwestern
40
Houston
.19
z 1.02 1.44 2.18

FIG. 2. Median judged probahilities for al target events.

sz sz ZP, (12)

teams divisions conferences

and the sum over the two conferences equals 1. Moreover, in every case the
sum of probabilities for the individual teams is greater than the probability
of the respective division, and the sum of the probabilities for the divisions
is greater than the probability of the respective conference, consistent with
support theory.®

The same pattern holds in the analysis of individual subjects. The median
sum of probabilities for the eight teamsis 2.40, the median sum for the four

¢ In every case this also holds for a significant majority of subjects (p < .01 by sign test).
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TABLE 1

Test of Binary Complementarity for Binary Conditional Probability Judgments
Eastern Conf. Western Conf.
team (A) team (B) P(AB) 1 - P(BA t
Chicago Los Angeles 78.4 78.8 -0.10
Chicago San Antonio 48.9 48.3 0.11
Chicago Houston 61.1 54.2 117
Chicago Phoenix 51.5 545 -0.52
Orlando Los Angeles 785 78.6 0.04
Orlando San Antonio 43.8 48.8 -0.92
Orlando Houston 65.3 55.1 2.00*
Orlando Phoenix 61.9 48.2 2.43**
Indiana Los Angeles 68.8 66.9 0.40
Indiana San Antonio 35.6 36.4 -0.15
Indiana Houston 49.5 55.3 -1.19
Indiana Phoenix 415 35.0 1.29
New York Los Angeles 75.1 67.1 1.60
New York San Antonio 40.9 36.4 0.81
New York Houston 4.4 50.1 -1.16
New York Phoenix 416 413 0.04

Note. The first and second columns, respectively, list the Eastern Conference and Western
Conference teams in a given matchup. The third column lists the mean judged probability
that the Eastern Conference team wins conditional on such a matchup. The fourth column
lists one minus the mean judged probability that the Western Conference team wins conditional
on such a matchup. The last column lists the t statistic for this comparison.

* .05 < p<.10.

** p < .05.

divisionsis 1.44, and the median sum of probabilitiesfor the two conferences
is1.00. Moreover, 41 of 50 respondents satisfied Eq. (11) with strict inequali-
ties, and 49 of 50 respondents reported probabilities for the eight teams that
sum to more than one (p <.001 by sign test in both cases).

We have now seen that binary complementarity holds nicely for judgments
that each conference wins the championship (both within and between sub-
jects). To verify that binary complementarity holds for the conditional proba-
bility data (which can only be tested between subjects), we compared P(A,B)
and 1 — P(B,A) for each of these 16 possible matchups. Recall that each
participant judged the probability of one team winning, assuming that a par-
ticular pair reaches the finals. Table 1 displays means and t statistics for
each of the 16 possible pairings presented. In only one case of 16 is P(A,B)
significantly (p < .05) different from 1 — P(B,A); an acceptable rate consid-
ering that there were 16 tests.” Moreover, the mean sum of median probabili-

" Note that there is a 56% probability that one or more tests of 16 would have come out
significant at p < .05 by chance.
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ties for the 16 pairs of complementary events was 1.008, very close to 1.
Analyses that follow therefore assume that binary complementarity holds.

Product Rule

To verify the product rule, recall that odds terms were generated from
pairwise conditional probability judgments, which were constructed from
four teams belonging to each of two conferences. This design provides 36
tests of Eq. (3) that involve unique quartets of teams. For each of these 36
quartets there are four unique instantiations of the product rule that can be
tested using the data collected in this study. For example, given any teams
A and B from the Eastern Conference and teams C and D from the Western
Conference, both Eq. (3) and its reciproca are valid tests of the product
rule? as well as

R(C,A)R(A,D) = R(C,B)R(B,D)

and its reciprocal. However, if we take the logarithm of both sides of
Eq. (3) and subtract the right side from the left, we get

InR(AC) + INR(C,B) — INR(AD) — INR(D,B) =0, (12

which yields identical test statistics for all four redundant permutations. For
each subject we can calculate the left-hand side of Eq. (12) for each of the
36 tests of the product rule and conduct 36 sign tests. This analysis yields
values significantly (p < .05) different from zero in only 3 of 36 cases,
indicating an adequate fit for the product rule in this between-subject anal-
ysis.

Next, we can examine the median response to each item in the survey and
construct ordered pairs consisting of both sides of Eq. (3) for each of the
(36 unique quartets) X (4 permutations) X (2 orders) = 288 data points.
Taking the natural log of both terms, these points are plotted in Fig. 3. The
result is a very high correlation (r = .95) and a very good fit of the data to
the identity line (R? = .90). The same analysis on individual subjects yields
amedian correlation of .73 (R? = .53).

The excellent fit of the product rule for these data lends credence to the
notion that support for a particular hypothesisisindependent of the hypothe-
sis to which it is being compared. The robustness of the product rule is a
bit surprising in the context of the present study, as one might expect that
the specific pairing of teams would influence experts’ predictions of which

8 Note that R(Y,X) = [R(X,Y)] " for all X, Y.

® Note that there is a 27% probability that three or more tests of 36 would have come out
significant at p < .05 by chance. For an alternative test of the product rule, see Brenner and
Rottenstreich (1998).
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FIG. 3. Tests of the product rule.

team will win. For instance, a participant might think that the San Antonio
Spurs match up better against the Orlando Magic than they do against the
Chicago Bulls, despite the fact that Orlando is perceived to be a stronger
team overall. Apparently such interactions did not affect judged probabilities
substantially in the present study.

(i) From assessed strength of evidence to support. Before scaling support
using Eqg. (6), we can test the necessary and sufficient conditions for the
power relation between strength and support (Egs. (4) and (5)), using raw
strength ratings and support inferred from pairwise conditional probabilities.
Table 2 lists the median strength rating beside the name of the relevant team
in the Eastern Conference (rows) and Western Conference (columns). Each
cell lists the median judged probability that the corresponding Eastern Con-

TABLE 2
Median Strength Ratings and Conditional Probability Judgments
95.0 81.0 67.5 45.0
San Antonio Phoenix Houston Los Angeles
90.0 Orlando 46.5 575 60.0 80.0
84.0 Chicago 50.0 50.0 60.0 82.0
75.5 Indiana 35.0 375 515 70.0
70.0 New York 40.0 40.0 48.0 74.0

Note. Margina entries are median strength ratings for the adjacent team. Table cells list
the median judged probability that the designated Eastern Conference team (row) wins the
championship, assuming that they play the designated Western Conference team (column) in
the finals.
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ference team wins the championship assuming that the corresponding East-
ern and Western Conference teams make the finals.*®

To test the assumption that strength and support are related monotonically
(Eq. (4)), one can count in how many cases the stronger rated team of each
potential matchup is assigned at least a 50% chance of winning. Using the
median response to each item, this pattern was satisfied in 15 of 16 tests.
To test the assumption that strength and support ratios are related monotoni-
cally (Eq. (5)), one can compare the ordering of strength ratiosto the ordering
of oddsratiosfor pairs of matchups. Using the median responseto each item,
Eqg. (5) was satisfied for 109 of 120 tests. The median subject satisfied
Eq. (4) for 15 of 16 tests, and the median subject satisfied Eq. (5) for 106
of 120 tests.

To scale support™ we must estimate R(A,B) assuming binary complemen-
tarity (i.e., assuming P(B,A) = 1 — P(A,B)). Regressing the left-hand term
of Eq. (6) on the right-hand term using median strength ratings and median
conditional probabilities (with no constant term) yields? k = 2.03, R? =
.93. The median estimate of k over the 50 subjectsis 2.20, median R? = .75.
Theresult k > 1 suggeststhat odds ratios (derived from judged probabilities)
are more extreme than the corresponding ratios of assessed team strength.
The values of k obtained here correspond closely to values obtained by
Koehler (1996).

(if) From support to judged probability. We can estimate the global weight
w from Eq. (7) using raw strength ratings and values of k obtained in the
previous analysis. Using median responses to each item, and regressing with-
out aconstant term, yieldsw; = .65, R* = .90. As predicted, wis substantially
less than 1. The median estimate of w; over the 50 subjects is .46, and the
median R? = .90. This result suggests that support for the hypothesis that a
particular team does not win the NBA championship is on average substan-
tialy less than the sum of support for the hypotheses that each aternative
team wins. Also, it seems that a model using a single global discount factor
fits the data reasonably well.

(iii) From judged probability to certainty equivalents. Figure 4 displays
the median certainty equivalent for each prospect. The choice data in Fig.
4 echo the judgment datain Fig. 2 and confirm the prediction of subadditivity

0 These medians are computed over al subjects, assuming binary complementarity.

1 |t isworth noting that because the monotonicity requirements (Egs. (4) and (5)) are neces-
sary and sufficient for the power relation, the empirically observed goodness-of-fit of the power
relation must be closely related to the proportion of tests satisfying the monotonicity require-
ments.

2 The R? statistics reported for these and subsequent regressions through the origin should
be interpreted with caution. They were calculated as the ratio of the sum of squared fitted
values to the sum of squared observations. Hence, it should be noted that these statistics
compare the fit of the model to the null hypothesisy: = O rather than y; = y. For a discussion
of problems with R? statistics in models with zero intercepts, see Aigner (1971), pp. 85-90.
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Conference Division Team
49 51
Chicago
49 (49,
Central
Indiana
29 (28
74 (67
Eastern
49 (42
Orlando
Atlantic
49 (54,
NY
29 (27,
9 138
LA
49 (28
Pacific
Phoenix
Western e
79 (72
60 (51
SA
Midwestern
50 (s
Houston
21 o
z 153 197 287

FIG. 4. Median certainty equivalents (in dollars) for all prospects that offer $160 if the
designated conference, division, or team wins the NBA playoffs. Values in parentheses are
predictions based on median judged probabilities (see Fig. 2) and a = .80 (derived from
median responses over subjects), using Eq. (8).

that violates the standard model of choice under uncertainty.® In
every case, the sum of C’sfor the individual teams is greater than C for the
respective division, and the sum of the C’s for the divisions is greater than
C for the respective conference.**

The pattern above can be reconciled with expected utility theory only if
subjects are risk seeking. In order to rule out this explanation, we can esti-

¥ For amore detailed discussion of this condition and the data displayed in Fig. 4, see Fox
and Tversky (1998).
¥n every case this aso holds for a mgjority of subjects (p < .01).
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TABLE 3
Values of a, b, and ¢ Used in the Spinner Games and Median Vaue
of Subjects Responses

Variable prospect

Fixed prospect P
Probability .25 .25 .50 .25 $x .50
outcome $a $b $0 $c (median) $0

1 50 100 25 131

2 30 60 10 86.5

3 20 90 40 70

4 10 110 35 82

5 85 55 120 31

6 50 45 75 29

7 95 25 70 42

8 115 15 80 43

mate the utility function for gains assuming u(x) = x% a > 0. To estimate
the exponent, we can use data from the ‘‘spinner games’ (phase 2 of the
study). If a subject is indifferent between the fixed prospect ($a, .25; $b,
.25; $0, .5) and the variable prospect ($c, .25; $x, .25; $0, .5) then assuming
a power utility function, a* + b® = c* + x°. Because a, b, and ¢ are given
and the value of x is determined by the subject, one can solve for a > 0.
The exponent for each subject was estimated using the median value of a
over the eight problems listed in Table 3. This analysis showed that partici-
pants were generally risk averse: 32 subjects exhibited a < 1.00 (risk aver-
sion); 14 exhibited o = 1.00 (risk neutrality); and 4 exhibited a > 1.00 (risk
seeking) (p < .001 by sign test). The median response to each of the eight
tridls yields a = .80.

Next, we can predict certainty equivalents from judged probabilities and
the parameter a, using Eq. (8). This analysis yields a good fit based on the
median response over subjects to each item. Figure 4 displays predicted val-
ues in parentheses beside observed values. The mean error over the fourteen
$160 prospects is —$4.38, and the mean absolute error is $5.05.5°

(iv) From assessed strength of evidence to certainty equivalents. We can
now bring the foregoing analyses together to predict subjects’ choices from
their assessments of team strength. First, recall that Eq. (10) assumes that
S(A) + sS(A) is approximately constant for al i, so that

PAA) _SA) _
PALA)  s(A)
3 Obviously this result is somewhat sensitive to the estimate of o. Repeating the anaysis

using the median estimate of o over subjects (.86) and restricting attention to the eight teams
yields a remarkably low mean error of $0.10 and a mean absolute error of $2.54.

RIAA).
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FIG. 5. Natural logarithm of the ratio certainty equivalents for prospects that pay $160
if particular teams win, plotted against the natural logarithm of the ratio of the strength ratings
for those teams.

To test this assumption, we compared the median value of In[(P(A,A)/
P(A,A))] to the median value of In R(A,A) for al 32 comparisons pro-
vided by the experiment design. The correlation between these two terms
was .964. Fitting the relationship to theidentity lineyields R? = .73, areason-
ably good fit.

We can now proceed to the prediction of certainty equivalents from
strength ratings. Equation (10) implies that certainty equivalent ratios and
strength ratios should be linear in alog—log metric. The present design pro-
vides 56 such comparisons, which are plotted in Fig. 5.

Using the median response given by our subjects and regressing the left-
hand term of Eg. (10) on the right-hand term with no constant yields 6 =
2.57, R? = .98. The fit of the model is excellent, and the estimate of 8 is
remarkably closeto theratio of k to a, estimated independently from median
responses to conditional probability items and choices among chance pros-
pects, respectively: k/a = 2.03/.80 = 2.54. Repeating this analysis on indi-
vidual subjects yields a median 8 = 1.96; median k/a = 2.49; median
R? = .76.
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DISCUSSION

The present study provides a thorough within-subject test of the major
assumptions and implications of support theory in judgment and choice. In
this investigation support was scaled from raw strength ratings, the major
axioms of support theory were verified, and choices under uncertainty were
predicted from strength judgments using a support theory framework that
held together very nicely. In particular, the judged probabilities that a particu-
lar team, division, or conference would win the NBA championship exhibit
binary complementarity and consistent subadditivity. Second, both major im-
plications of the support theory representation (i.e., binary complementarity
and the product rule) seem to be satisfied reasonably consistently in pairwise
conditional probability judgments. Third, both assumptions necessary and
sufficient to scale support as a power function of strength hold in the vast
majority of cases. Fourth, support for the hypothesis that a particular team
failsto win the championship (derived from simplejudged probabilities) was
far less than the sum of support for the seven remaining teams winning (de-
rived from conditional probabilities and strength ratings), yielding a global
weight much less than one. Fifth, the data revealed consistent subadditivity
of certainty equivalents that cannot be explained by the standard economic
model of choice under uncertainty (expected utility theory with risk aversion)
but is consistent with a model that allows subjective probabilities that are
subadditive, consistent with support theory. Sixth, certainty equivalents
could be predicted to areasonable degree of accuracy from judged probabili-
ties and independent estimates of the utility function for monetary gains.
Finally, the data suggest that relative strength ratings are an excellent pre-
dictor of relative certainty equivalents, and regression coefficients corre-
spond closely to those predicted from independent assessments of the utility
and strength-support scaling parameters. | close with several caveats con-
cerning the interpretation and generalizability of these results.

First, | have assumed in this paper that relative strength of a particular team
isan appropriate proxy for support, which in this case might be interpreted as
strength of evidence that a particular team wins the NBA tournament. As
mentioned earlier, it is reasonable to expect that sophisticated experts will
assign different strength to these hypotheses depending on the specific
matchup in question. Moreover, the strength of evidence for ateam winning
the championship may depend partly on the specific path they face to the
finals.!® For instance, people may view the Eastern Conference as more bal-
anced than the Western Conference. Finally, when we condition probabilities
of winning on the assumption that two particular teams reach the finals, it
may be reasonable for an expert to reassess the strength of those teams. For

16 Note that the playoffs are structured so that the Eastern Conference champion faces the
Western Conference champion in the fina series.
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instance, if | am asked to assume that a weak team such as the Los Angeles
Lakersreachesthe NBA finals, | may augment my assessment of the Lakers
strength accordingly. In light of these subtle distinctions between team
strength and support for the specific hypothesis that a particular team wins
the championship, it is encouraging that the simplified approach forwarded
here fits as well as it does in practice.

Second, in the analysis of the certainty equivalent data | assumed a model
of decision under uncertainty in which subadditive judged probabilities, con-
sistent with support theory, replace additive subjective probabilities, consis-
tent with expected utility theory. A further refinement would transform
judged probahilities by a weighting function that reflects the commonly ob-
served pattern of diminishing sensitivity to probabilities that depart from
zero or 1, as suggested in prospect theory (Tversky & Kahneman, 1992; see
also Tversky & Fox, 1995). Indeed, such amodel may fit the data better for
judged probabilities that are very low or very high, where this distortion is
typically most pronounced. A more detailed account of such a‘‘two-stage
model’’ is beyond the scope of the present paper, but is discussed at length
elsewhere (see Fox & Tversky, 1998; Tversky & Wakker, 1998).

Third, in this study | have chosen to focus attention on the relationship
between raw ratings of strength and judged probabilities of simple hypothe-
ses or implicit digunctions (e.g., that the Central Division wins the NBA
championship). That is, attention was restricted to the difference between
the left-hand term and the right-hand term in Eq. (2). A more thorough inves-
tigation would aso consider explicit digunctions (e.g., that Chicago or Indi-
anawinsthe NBA championship). One challenge for such astudy isto deter-
mine an appropriate means by which to elicit strength for a hypothesis
described as a digjunction of multiple events (see Brenner & Koehler, 1999).
However, there is ample evidence consistent with both inequalities in
Eq. (2) from studies of judgment (Rottenstreich & Tversky, 1997; Fox &
Birke, 1998) and choice (Johnson et a., 1993; Wu & Gonzalez, 1998; Fox &
Tversky, 1998; Fox, 1998).

Finally, although there is broad general support for binary complementar-
ity, a few recent studies suggest that this condition may fail under certain
conditions (Brenner & Rottenstreich, 1998, in press; Macchi, Osherson, &
Krantz, 1998; see also Fox & Levav, 1999). In particular, Brenner and Rot-
tenstreich (1998, in press) provide evidence that the sum of the probability
of an explicit digunction and its complement, P(A; O A,,B) + P(B,A; OA,)
may be systematically less than 1. The investigators attribute this phenome-
non to an asymmetric tendency to spontaneously repack the focal hypothesis
relative to the alternative hypothesis and suggest that support for a hypothesis
may therefore differ systematically depending on whether that hypothesisis
inaroleasthefocal versusthe aternative hypothesis. If support for ahypoth-
esis depends on whether the hypothesis is focal or aternative, it will be
challenging to devise an appropriate means to assess raw support directly.
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Aforementioned caveats notwithstanding, the present study provides
strong support for the major axioms and consequences of support theory and
demonstrates that this model of intuitive judgment under uncertainty also
predicts choices when money is at stake.
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