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Economists define risk in terms of the variability of
possible outcomes, whereas clinicians and laypeople
generally view risk as exposure to possible loss or harm.
Neuroeconomic studies using relatively simple behav-
ioral tasks have identified a network of brain regions that
respond to economic risk, but these studies have had
limited success predicting naturalistic risk-taking. By
contrast, more complex behavioral tasks developed by
clinicians (e.g. Balloon Analogue Risk Task and Iowa
Gambling Task) correlate with naturalistic risk-taking
but resist decomposition into distinct cognitive con-
structs. We propose here that to bridge this gap and
better understand neural substrates of naturalistic risk-
taking, new tasks are needed that: are decomposable
into basic cognitive and/or economic constructs; predict
naturalistic risk-taking; and engender dynamic, affective
engagement.

Defining risk
When economists and clinical psychologists characterize
behavior as ‘risky’, they use the same word but mean
different things. Risk in the economics and finance litera-
tures (e.g. [1]) is usually defined in terms of the variance of
possible monetary outcomes, and risk seeking is defined as
a preference for a higher variance payoff, holding expected
value (EV) constant. By contrast, when clinicians and lay
people identify behaviors as risky (e.g. drug use, unpro-
tected-sex, or mountain climbing) they invoke a broader
meaning of the term. Clinicians typically define risky
behavior as behavior that can harm oneself or others [2].
Interviews with experienced managers suggest that they
also tend to see risk in terms of possible negative outcomes,
rather than conceiving it in terms of chance probabilities or
some quantifiable construct [3]. Psychometric studies have
found that the lay conception of riskiness encompasses a
‘dread’ dimension that is characterized by lack of control
and/or potential catastrophic consequences, and an ‘un-
known’ dimension that is characterized by unobservable,
unfamiliar, and/or delayed consequences [4].

This gap in definitions is reflected in distinct approaches
to studying risk. Neuroeconomics is a field aimed at under-

standing the neural basis of decision-making by drawing on
models from behavioral economics and methods used in
cognitive neuroscience [5]. The bulk of the neuroeconomics
literature has focused (with substantial success) on disen-
tangling the role of specific brain regions in coding economic
variables implicated in traditional expectation-based mod-
els of risk-taking (Box 1), or mean–variance models of risk-
taking used in financial decision theories (Box 2). However,
economic paradigms have had limited success in predicting
individualdifferences innaturalistic risk-taking, even in the
monetary domain. Meanwhile, clinical psychologists and
clinical neuroscientists have advanced behavioral para-
digms that better predict real-world risk-taking behaviors
and resonate more closely with the lay conception of risk.
However, they cannot readily be decomposed to identify
separate underlying cognitive and neural mechanisms in-
volved innaturalistic risk-taking. In this review,wepropose
a research approach that combines the conceptual rigor of
neuroeconomics with the predictive validity of clinical neu-
roscience, thus bridging these disciplines. We believe that
such an approach will yield a better understanding of the
neural mechanisms involved in risky decision making in
both healthy and clinical populations.

Neuroeconomics of risk perception and risk-taking
Since Knight [6], economists have distinguished decision
under risk, in which the decision maker knows the objec-
tive probability distribution over possible outcomes, from
decision under uncertainty, in which this information is
assessed with some degree of vagueness (Box 3).

Early neuroimaging studies of risk relied largely on task
paradigms (Tables 1 and 2) thatmanipulate variance in the
probability distribution of reward, enabling the identifica-
tion of neural responses associated with objective risk de-
fined in economic terms. This work has identified risk-
related responses in several regions, mainly the anterior
cingulate cortex (ACC), lateral orbitofrontal cortex (OFC)
and insula, all of which are also responsive to monetary
gains and/or losses. The lateral OFC and ACC were impli-
cated in a positron emission tomography (PET) study coding
risk in terms of increased variance owing to differences in
probabilities of points lost or gained [7]. These regions, as
well as the insula, also responded todifferent levels of risk in
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a gambling task, as measured using functional magnetic
resonance imaging (fMRI) [8]. The posterior parietal cortex,
dorsolateral prefrontal cortex (DLPFC) and anterior insula
were found to be more active during a choice of risky versus
safe options [9]; in addition, fMRI activity levels in the right
insula following a negative outcome were negatively corre-
lated with subsequent risky choices. Similarly, in a study
using a financial decision-making paradigm (involving un-
certainty and learning), increased activity in anterior insula
was associated with subsequent switching by participants
from a risky to a safe option [10].

Preuschoff et al. [11] segregated risk (defined as variance
of possible outcomes) from expected reward in modeling a
similar paradigm to [8]. They found that risk was coded in
the ventral striatum, but on a more delayed timescale than
the phasic response to the reward prediction error signal
that is usually observed in this region. This fMRI signal
resembled sustained activity of dopamine neurons from
electrophysiological recordings in non-human primates
[12] (although see [13]), suggesting that dopamine neurons
encode both reward and its variance on different timescales.
The authors further used a model-driven approach to study

Box 1. Expectation-based models of risk-taking

Expectation-based models posit that preferences are a function of the

magnitudes and probabilities of possible outcomes. Consider a

prospect (x, p) that offers $x with probability p (and nothing

otherwise). A basic decision rule is to choose the outcome that

maximizes expected value (EV; Equation I):

EV ¼ p x : [I]

EV maximization implies risk neutrality (e.g. indifference between

receiving: (i) $50 for sure, or (ii) a 50% chance to win $100). To

accommodate risk aversion, expected utility theory [66] allows the

subjective value of money to decrease as wealth increases. This gives

rise to a concave utility function, u(.) over states of wealth, W.

Decision makers choose the option that maximizes expected utility

(EU; Equation II):

EU ¼ p uðxÞ; [II]

where u(x) represents the utility of outcome x. For example, a concave

utility function [u00(x) < 0] implies that gaining $50 (in addition to one’s

current state of wealth) adds more than half the utility of gaining $100

(Figure Ia). Therefore, such a utility function implies that a sure $50 is

preferred to a 50% chance of $100.

A utility function over states of wealth cannot readily accommodate

pronounced risk aversion for gambles involving possible losses [67];

neither can it accommodate the commonly observed fourfold pattern

of risk preferences: risk aversion for high-probability gains and low-

probability losses, coupled with risk seeking for low-probability gains

and high-probability losses. Prospect theory [68,69] accommodates

these patterns by proposing that decision makers maximize the value

V of a prospect (Equation III):

V ðx ; pÞ ¼ wðpÞ vðxÞ; [III]

where v(x) measures the subjective value of the consequence x, and

w( p) measures the impact of probability p on the attractiveness of the

prospect.

A typical value function v(.), displayed in Figure Ib, is characterized

by: (i) reference dependence: it is a function of changes in wealth

relative to a reference point, such as the status quo; (ii) diminishing

sensitivity: it is concave for gains but convex for losses; and (iii) loss

aversion: the loss limb is much steeper than the gain limb. Loss

aversion accommodates pronounced risk aversion for mixed (gain–

loss) gambles; for example, rejection of a gamble that offers a 50%

chance of winning $150 and a 50% chance of losing $100. Tom et al.

[70] and De Martino et al. [71] identified neural correlates of loss

aversion in humans. Diminishing sensitivity explains a general

tendency toward risk aversion for gains (as in expected utility theory)

but risk seeking for losses. Reference dependence allows risk

preferences to differ depending on whether prospects are described

(framed) in terms of gains or losses relative to different reference

points. De Martino et al. [72] studied framing susceptibility in humans

using fMRI.

The weighting function w(.), depicted in Figure Ic, captures

diminishing sensitivity to probabilities away from natural bound-

aries of impossibility ( p = 0) and certainty ( p = 1). The weighting

function is characterized by: (i) overweighting of probabilities near

zero; (ii) underweighting of probabilities otherwise, especially near

1; and (iii) reduced sensitivity to differences between intermediate

probabilities. Overweighting low-probability events can supersede

the impact of nonlinearities of the value function, leading to risk

seeking for low-probability gains (e.g. the attraction of lottery

tickets) and risk aversion for low-probability losses (e.g. the

attraction of insurance). Underweighting moderate to high prob-

abilities reinforces the impact of nonlinearities of the value function,

leading to risk aversion for high-probability gains and risk seeking

for high-probability losses. The weighting function was recently

studied using fMRI by Hsu et al. [73], Paulus and Frank [74] and

Berns et al. [75].
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Figure I. Representative utility, value and weighting functions. (a) an illustration of how expected utility theory explains risk aversion: Utility (u) as a function of

increasing wealth (W), starting at an initial level (W0). The utility of gaining $50, u(W0+$50), is more than half the utility of gaining $100, 1/2 u(W0+$100). Thus, according

to this function, the individual would rather receive $50 for sure than face a 50% chance of gaining $100 (and nothing otherwise). (b) A representative prospect theory

value function depicts subjective value (v) of losing or gaining a particular amount of money relative to the reference point; (c) A representative prospect theory

probability weighting function depicts the decision weight (w) as a function of objective probability ( p).
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the concepts of risk prediction and risk-prediction errors
[14], suggesting thatbothareencodedby theanterior insula,
again on different timescales.

In sum, neuroeconomic studies of risk have implicated
many of the same brain regions involved in the processing
of monetary gains and/or losses, putatively related to the
midbrain dopamine system and its targets, although po-
tentially using different coding schemes and timescales
within those same systems.

Individual risk attitudes
A first step towards linking economic models to naturalis-
tic risk-taking is to identify neural systems in which
activity is correlated with individual differences in eco-
nomic risk attitudes. Recent work has shown that many
(but not all) of the brain areas that exhibit sensitivity to
economic risk (i.e. variance in the probability distribution
over possible outcomes) also reveal individual differences
that co-vary with risk preferences. Tobler et al. [15] found
positive associations between risk aversion and fMRI
signals coding variance of outcomes in lateral OFC, and
positive associations with risk-seeking in more medial
OFC regions. The same authors [16] also found an

EV-related fMRI signal in lateral OFC that was positively
correlated with risk aversion and negatively correlated
with risk-seeking. Another study found risk-seeking to be
negatively correlated with the fMRI signal in dorsomedial
prefrontal cortex (DMPFC), whereas positive correlations
were found with reward magnitude signals in ventrome-
dial prefrontal cortex (VMPFC) [17]. A fourth study
reported that the fMRI signal in inferior frontal gyrus
(IFG) increased during low-risk gambles and this increase
was positively correlated with individual risk aversion
[18]. Collectively, these studies suggest that individual
economic risk preferences modulate brain activity in the
regions implicated in risk processing: risk aversion was
correlated with lateral PFC regions in OFC, DMPFC and
IFG (adjacent to DLPFC), whereas risk seeking was posi-
tively correlated with activity in more medial prefrontal
cortex regions. Interestingly, the insula was not found to
code individual risk attitudes (for more on insula involve-
ment in risk-taking, see [19]). The correlation of risk
attitudes with areas in inferior prefrontal cortex accords
with previous studies implicating this region in cognitive
control and inhibition (see [20]). The DLPFC, a region
previously implicated in self-control during decision mak-
ing (e.g. [21]), has also been implicated in modulation of
risk attitudes. Knoch et al. [22] used repetitive Transcra-
nial Magnetic Stimulation (rTMS) to suppress activity in
the DLPFC, which led to increased risk-seeking in the
Cambridge Gambling Task [7]. Conversely, when excit-
ability of the same regions was increased using transcra-
nial Direct Current Stimulation (tDCS), subjects
exhibited increased risk aversion [23]. Thus, the DLPFC
might have a key role in the modulation of risk attitudes,
even though it hasnot been implicated in representation of
risk per se.

Despite this success in mapping neural building blocks
of economic risk-taking, such studies have seldom, if ever,
attempted to examine the association between individual
differences in neural response to economic risk and natu-
ralistic risk-taking behavior. In fact, laboratory measures
of economic risk attitudes have rarely been used to predict
naturalistic risk-taking (or perhaps they have just rarely
succeeded). A few studies have had modest success pre-
dicting naturalistic financial risk-taking from laboratory
measures (e.g. hog farmers who were more risk averse for
lotteries were also more likely to hedge on the hog futures
market [24]). In other studies, researchers have predicted
naturalistic risk-taking behaviors from psychometric mea-
sures of risk tolerance (e.g. citizens who said they were
more risk tolerant were more likely to move from one part
of Germany to another [25]) or the association between
distinct real-world manifestations of risk-taking (e.g.
choice of labor contracts with different levels of income
risk could be predicted from other naturalistic behaviors,
such as expenditures on gambling and insurance [26]).

It bears mentioning that there might be inherent limits
to the proportion of variance in naturalistic risk-taking
behavior that can be explained using any measure of risk
preference. First, there is substantial variation in individ-
ual risk preferences across life domains, although these
probably reflect differences in perceived risks and/or ben-
efits of such activities [27,28]. Second, several situational

Box 2. Risk-value models of risk-taking

The risk-value approach to risk-taking, advanced in financial decision

theory [1], assumes that preferences are a function of two parameters:

risk, operationalized as the variance (or standard deviation) in the

probability distribution over possible outcomes, s; and expected

value, the mean of that distribution, m. Functions of these two

variables define indifference curves reflecting portfolios that a person

considers equally attractive (Figure I). A steeper indifference curve

represents greater risk aversion because it suggests that a given

increase in risk of a portfolio must be accompanied by a greater

increase in expected value to maintain its attractiveness.

The risk-value approach is appealing from a modeling standpoint

because it segregates an objective measure of riskiness from expected

reward. Unfortunately, behavioral studies show that perceived

riskiness is a function of more than merely variance. For instance,

holding variance constant, perceived riskiness can vary with: (i) the

absolute magnitude of payoffs; (ii) whether they are perceived as

gains or losses; and (iii) skewness of the probability distribution over

outcomes. An alternative approach that can accommodate such

behavioral tendencies includes a measure of perceived riskiness that

can diverge from objective measures (e.g. [76–78]).[()TD$FIG]
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Figure I. Indifference curves for a relatively risk-averse individual and a risk-

seeking individual in a mean-variance model. Lines are indifference curves that

depict the mean (m) and standard deviation (s) of portfolio returns that an

individual finds equally attractive. The dashed line represents a relatively risk-

averse individual and the solid line a relatively risk-seeking individual.
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variables can influence risk perception and risk prefer-
ences. These range from the way in which prospects are
framed (e.g. in terms of gains and losses [29]), depicted (e.g.
as a bar graph or density function [30]) or labeled (e.g.
Republicans reminded of their political affiliation were
subsequently more attracted to options labeled ‘conserva-
tive’ [31]) to the way in which preferences are elicited (e.g.
by pricing risky prospects versus choosing between them
[32,33]). Third, economic risk-preferences co-vary with
state variables, including specific emotions (e.g. people
are apparently more risk seeking when angry than when
fearful [34]) and motivational state (e.g. whether one is in
an aspirational or protective mode [35]).

Characterizing the components of naturalistic risk-
taking behavior
The neuroeconomic perspective on risk-taking has begun
to lay a foundation for understanding how the brain
responds to risky monetary payoffs, but the question
remains how to bridge the gap with risk-taking in situ.
To do so, one first needs to characterize risk-taking in
naturalistic environments. A popular inventory of such
behaviors, the domain-specific risk-attitude scale (DOS-
PERT; [28]) identifies five domains of risk-taking (recrea-
tional, financial, health, social and ethical) that differ
across individuals according to their self-reports. Such
behaviors (e.g. extreme sports, investing in stocks, smok-
ing, taking the unpopular stand in a social discussion or
cheating in a tax return) all entail a potential negative
outcome and variance of possible outcomes. However, we
argue that willingness to accept variance in outcomes or
negative outcomes does not fully capture what drives
participation in such ‘risky’ behaviors.

In fact, several factors distinct from the economic con-
ception of risk preference might contribute to what has
been called ‘risky’ behavior in the field. Consider, for
example, the choice to engage in unprotected sex. This
decision could stem from: (i) underestimating the likeli-
hood of negative consequences; (ii) discounting possible
negative consequences because they are in the future;
or (iii) bowing to social pressure or perceived norms. Only
after one controls for such factors, and also related

constructs such as sensation-seeking and impulsivity,
can one distill what might be properly deemed individual
‘risk preference’ and identify economic factors contributing
to naturalistic risk-taking behavior.

Even if one is successful in mapping distilled measures
of naturalistic risk-taking onto economic variables, these
‘cold’ cognitive constructs still fail to capture fully what are
largely emotional decisions. In an influential survey, Loe-
wenstein et al. [36] observed that risky decisions are driven
not just by anticipated emotions that a decision maker
associates with possible consequences, but also ‘anticipa-
tory’ emotions experienced at the time of the decision.
Although these researchers emphasized negative emo-
tions, such as fear and anxiety, we suggest that positive
emotions also have an important role in risk-taking behav-
ior: for example, the exhilaration of waiting for a roulette
ball to land in its slot or driving a car beyond the speed
limit (see also [37] on ‘need for arousal’).

Decomposing current naturalistic risk-taking tasks
Well-designed neuroeconomic tasks have been relatively
decomposable (Table 2), but as discussed above, they often
lack external validity. Two prominent behavioral para-
digms have had unique success predicting naturalistic
risk-taking behaviors. The first is the Iowa Gambling Task
(IGT), described in Table 1. The original study using this
task showed that patients with vmPFC lesions who exhib-
ited ‘real-life’ risky behaviors were impaired on the task
[38] (for a recent fMRI study with healthy subjects showing
differences in this region, see [39]). Patients with lesions in
the amygdala, DLPFC, OFC or DMPFC, and other clinical
populations, such as drug abusers, alcoholics and patho-
logical gamblers, were also found to be impaired on the IGT
(for a critical review, see [40]). Whereas the ‘bad’ decks are
indeed ‘riskier’ in an economic sense, increased variance in
this case is confounded with lower expected value. More-
over, risk preferences are confounded with the need to
learn the long-term EV of the decks (for critiques, see
[41,42]). Thus, it is almost impossible to determine the
degree to which individual differences in behavior in the
IGT reflect differences in learning, risk attitudes, and/or
sensitivity to gain and/or loss magnitude (however, a

Box 3. From risk to uncertainty

Most naturalistic decisions, other than simple games of chance, must

be made with incomplete knowledge of the probability distribution

over possible outcomes. Subjective expected utility theory (SEU) [79]

accommodates uncertainty by replacing objective probabilities with

subjective probabilities, inferred from choices, which are assumed to

accord with standard axioms of probability theory. However,

empirical studies of decision under uncertainty raise challenges to

this model that can be accommodated by an extension of prospect

theory from risk to uncertainty [69]. In particular:

� Subjective probabilities are not additive. If one asks a bettor how

much she is willing to pay to bet on each of several horses entered

in a race, her prices would typically sum to more than the total prize

paid for picking the winning horse. Under SEU with concave utility,

this implies subjective probabilities that sum to more than one. This

is because the tendency to overweight unlikely events and under-

weight probable events (captured by the inverse S-shaped weight-

ing function under risk; Box 1), is amplified by similar bias in the

subjective assessment of probabilities [80–82].

� People generally find uncertainty aversive. Ellsberg [83] devised a

problem involving an urn with 50 red balls and 50 black balls, and an

urn with 100 red and black balls in unknown proportion. He asserted

that most people would rather bet that they would blindly draw a red

(black) ball from the urn with known probabilities than a red (black)

ball from the urn with unknown probabilities. This aversion to betting

on events with vague probabilities (‘ambiguity aversion’) has since

been validated and modeled in numerous studies (reviewed in [84]).

It appears to be driven by an aversion to betting in situations in which

one feels relatively ignorant or incompetent [85–87].

Neuroimaging studies of ambiguity aversion have aimed to identify

brain mechanisms that code risk and ambiguity. Hsu et al. [88] and

Levy et al. [89] conclude that the same regions code both, only to a

different degree. However, Huettel et al. [90] and Bach et al. [91]

conclude that distinct regions code risk and ambiguity. This

disagreement might be due to differences in empirical paradigms,

and further studies are needed.
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computational model of distinct components of the task is
presented in [43]).

A second task that has successfully predicted natural-
istic risk-taking is the Balloon Analogue Risk Task (the
‘BART’) [44], described in Table 1. The average number of
pumps a person tolerates in the task was found to correlate
with self-reported drinking, smoking, stealing and sub-
stance use in healthy adults and adolescents [44–50],

but interestingly, not with performance on the IGT [44]
(but see [51]).

Recent neural research on the BART implicates
the DLPFC in risk-taking. Using fMRI, Rao et al. [52]
compared active risk-taking/pumping versus passive
pumping on the task, and found that DLPFC activity
was higher during active risk-taking. Further evidence
for the role of the lateral PFC in risk-taking in the BART

Table 1. Risk tasks used in studies cited in the main text

Task name

[Original author]

Study with

task cited

in main text

Brief task description Used by other

studies cited

in main text

Cambridge

Gambling

Task [7]

[7] A token is hidden under one of six boxes that are each one of two colors. Different trials

have different ratios between box colors (3:3, 4:2, 5:1). On each trial, participants choose a

color on which to bet. The color with the higher probability (more boxes) is associated with

lower potential gains and lower potential losses of points than is the color with lower

probability.

[22,23]

[8] [8] Two cards are drawn without replacement from a deck containing cards numbered from

one to ten (one of each). After the first card is presented, participants bet whether the next

card will be higher or lower than the first card. Thus, there is maximal risk when the first

card is five or six, zero risk when it is ten or one.

[11,14] use a

similar task

described

in the

corresponding

row below

[9] [9] On each trial, participants must respond quickly to receive a small sure gain of 20 points.

A longer wait involves potential higher gain or loss of either 40 points (longer wait) or 80

points (longest wait). All choices have the same expected value.

Behavioral

Investment

Allocation

Strategy

(BIAS) [10]

[10] On each trial, participants choose between two stocks (gain/loss gambles, one stochastically

dominating the other) and one bond (a sure gain of $1). They must learn through trial-and-

error thecharacteristics of thestocks, which changeover blocks of trials. Feedbackon payoffs

of the forgone options is presented on each trial.

[11] [11,14] Similar to [8] but participants bet on whether the second card will be higher or lower before

seeing the first card.

[15] [15] Each of 12 stimuli (circles of different colors, numbers and sizes) is associated with a different

reward magnitude and probability. These include all combinations of (100 and 200) point

rewards with (0, 0.25, 0.5, 0.75 and 1) probabilities, plus 300 and 400 rewards with 0.5

probability. Participants are first trained to learn the probabilities and outcomes associated

with each stimulus. Next, on each trial, a stimulus appears in one of four quadrants of the

screen, and participants indicate which quadrant using a button press.

[16]

[18] [18] Experiment 1: on each trial, participants choose between a risky and safe option. The risky

option is a lottery that offers a 50–50 chance of different outcomes (£10, £90 or £40, £60)

and the safe option offers the participants’ own certainty equivalent for the corresponding

risky lottery, as determined in a previous phase of the experiment.

[16]

Experiment 2: as in Experiment 1, on each trial, participants choose between a risky and

safe option. This time, possible outcomes of the risky option include (£10, £50), (£15, £45),

(£40, £80) and (£30, £90), and the safe options offer a range of semi-random values.

The Cups

Task [95]

[17] On each trial, participants choose between a risky and safe option. Each trial involves either

gains or losses. The options are presented as a choice of cups. The risky option involves

two to five cups, one containing a gain (loss) of $2, $3 or $5, and the others containing $0. If

the latter option is selected, the payoff from one cup is selected at random. The safe cup

offers a sure gain (loss) $1.

Iowa

Gambling

Task [38]

[38] On each trial, participants select a card from one of four decks; two ‘bad’ decks offer a

higher reward on most trials but also higher possible loss and lower overall expected

value, whereas two ‘good’ decks offer a lower reward on most trials but lower possible

loss and higher expected value. Participants learn the nature of the decks through trial-and-

error. In some versions of the task, the probabilities are not stationary.

[39]

Balloon

Analogue

Risk Task [44]

[44] On each trial, participants pump a simulated balloon without knowing when it will explode.

Each pump increases the potential reward to be gained but also the probability of explosion,

whichwipesoutallpotentialgains for that trial. Inmoststudies,balloonexplosionprobabilities

are drawn from a uniform distribution, and participants must learn explosion probabilities

through trial-and-error.

[52,53]

Devil’s

Task [55]

[54] This task is a forerunner to the BART: on each trial, participants decide how many of seven

treasure chests to open. They are informed that six boxes contain a prize and one box

contains a ‘devil’ that will cause them to lose all their potential gains on that trial. Similar

to the BART, participants make sequential choices and, after opening each chest, decide

whether to continue to the next chest or cash in their earnings to that point.
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was provided in a study [53] that used bilateral tDCS
putatively to enhance excitability in DLPFC, resulting
in decreased risk-taking/pumping behavior in the BART.
Gianotti et al. [54] used the similar Devil’s task [55], which
requires no learning (Table 1). They reported that greater
risk-takingwaspositively correlatedwith lower tonicEEG
activity (delta and theta bands) in right-lateral prefrontal
cortex, consistent with a negative association between
lateral prefrontal cortex engagement and risk-taking.
Jentsch et al. developed a version of the BART for rodents
[56] and found that temporary inactivation of a region
homologous to the human DLPFC resulted in increased
variability in behavior and sub-optimal performance,
whereas inactivation of the OFC homolog resulted in
overall decreased risk-taking. Together, these results
suggest a convergence in the neural basis of risky choice
between neuroeconomic paradigms and more naturalistic
tasks: increased activity in the DLPFC (primarily in the
right hemisphere) underlies risk avoidance and self-con-
trol, whereas increased activity in the OFC underlies risk-
taking.

Although the BART is attractive owing to its predictive
validity, it does not lend itself well to decomposition. In

particular, a task analysis reveals that every pump
increases the probability of explosion and the variance of
possible outcomes, but (similar to the IGT) this increased
risk is confounded with varying expected value. Moreover,
because the probability distribution of explosions is un-
known to subjects, this task also involves learning under
uncertainty (see [57] for a computational model of behavior
in the BART and [51] for comparison of models of BART
and IGT). A modified version of this task in which ‘explo-
sion’ probabilities are transparent remains correlated with
self-reported naturalistic risk-taking [58], suggesting that
these associations do not necessarily reflect the learning
component, but decomposition of this task remains chal-
lenging.

Exhilaration and tension in naturalistic risk-taking
Despite the limitations of BART, it has appealing features.
First, as discussed above, it predicts self-reported mea-
sures of naturalistic risk-taking reasonably well and dis-
tinguishes clinical populations. Second, it uses a familiar
naturalistic metaphor that engenders a strong affective
response (a sense of escalating tension and exhilaration)
that mimics the affective phenomenological experience of

Table 2. Decomposition of specific constructs that are isolated by tasks listed in Table 1 a

Studies with

task cited

in main text

Contrast used in study Uncertainty Variance of

outcomes

Probability

of gain

Probability

of loss

Expected

value

Magnitude

of gain

Magnitude

of loss

[7,22,23] Risk conditions versus

a control task

+b + + + + +

[8] Different risk levels

during anticipation

of second card

+ + + +

[9] Risky options versus

safe option

+ + + + +

[10] Compared to a rational

choice determined by

a computational

learning model

+ + + + + + +

[11,14] Contrast 1: variance

of outcomes

+ + +

Contrast 2: EV + + +

[15] Contrast 1: variance

of outcomes

?c + + +

Contrast 2: EV ? + + +

[18] Contrast 1: risky option

versus safe

+ +

Contrast 2: EV + +

[17] Risky cups versus

safe cup

+ + + +d + +

[38] Low EV decks versus

high EV decks

+ + + + + + +

[44,52,53] Increasing number

of pumps

+ + + + + + +

[54] Average number of

chests open

+ + + + + +

aAlthough tasks are often described as identifying a single cognitive or economic construct of interest, many tasks also engage additional potentially confounding processes.

This table presents a decomposition of the specific constructs that are engaged by the tasks listed in Table 1. For each task, the contrast of interest that was used to measure

risk (or expected value) is analyzed to identify the cognitive or economic constructs it also manipulated (listed in the top row of the table). Some of the studies listed in the table

accounted for these confounds using parametric statistical modeling.
b+ indicates that the relevant construct (column) is engaged by that contrast (row).
c? indicates unclear involvement of the relevant construct in the task.
dIn one condition the expected value is equal between the two options.
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risk-taking in naturalistic environments, which could par-
tially explain its capacity to predict naturalistic risk-tak-
ing behaviors.

Another task thatappears to tapdirectly into theaffective
dimension of risk-taking is a variation of the ‘near-miss’
paradigm (see [59]) developed by Clark et al. [60]. The task
imitates a slot machine with two reels, each with six icons:
the icon on the first reel is fixed either by the participant or a
computer, and the second reel spins on each trial. Partici-
pants rated ‘near-miss’ losses in which the second reel
stoppedonepositionaway froma ‘match’ asmoreunpleasant
than ‘far-miss’ losses in which the second reel was farther
frommatching. Interestingly, they also rated nearmisses as
more motivating for continued play than were far miss
losses. This was only the case for trials inwhich participants
had personal control by fixing the position of the first reel
themselves. Areas in both anterior insula and ventral stria-
tumwere found to bemore active during nearmisses versus
full misses (although both reflect the same objective loss,
they entail varying degrees of subjective regret for one’s
choice, cf. [61]). Moreover, Chase and Clark [62] found that
among gamblers, fMRI activity in dopaminergic midbrain
regions during near-miss events correlated positively with
gambling severity. These results suggest that individual
differences in risk attitudes (at least in the case of gambling)
may be driven by individual differences in dopaminergic
response (see [63]), in this case to events coding loss but that
might simultaneously be experienced as exhilarating and
motivating for further action. It is worth noting that reward
prediction error signals in the striatum reach their peak
during adolescence [64], a time of heightened risk-taking,
consistent with a role for dopamine in risk-taking.

Bridging the gap
To bridge the gap between economic models and naturalis-
tic risk-taking behaviors, we suggest that the former mod-
els must incorporate both the positive and negative
affective dimensions of risk-taking, through empirical para-
digms that can capture them in more compelling ways. We
thus propose three criteria for such new laboratory para-
digms:(i) Decomposable: the tasks must allow for decompo-
sition and analysis in terms of cognitive and economic
primitives (e.g. magnitude of gains and losses, and proba-
bilities), both for the sake of conceptual clarity and as a
prerequisite for identifying neural mechanisms using func-
tional imaging and other tools of behavioral neuroscien-
ce.(ii) Externally valid: the tasks must exhibit empirical
associations with naturalistic risk-taking behaviors in
healthy or clinical populations and/or enable one to distin-
guish between them. Naturally, a requirement for validity
is reliability of such measures (on reliability of fMRI, see
[65]).(iii) Emotionally engaging: the tasks must not only
capture static and cognitive dimensions of risk-taking (e.g.
an evaluation of the probability distribution over possible
outcomes), but also engage dynamic and affective dimen-
sions (e.g. the hope, exhilaration, tension, and/or fear that
might accompany risky behaviors).

From our reading, no single task yet conforms to all
three criteria. We argue that new tasks that do conform
will offer greater promise in helping identify behavioral
and neural factors that predict naturalistic risk-taking.

For instance, the recently developed Columbia Card Task
(CCT) [37] is dynamic and affective, and appears to be
decomposable. It remains to be seen whether cognitive
primitives of the CCT can be isolated using current model-
ing techniques in a neuroimaging study, and its predictive
validity is yet to be formally established.

As noted above, behavior in any task might vary sys-
tematically with state variables, such as arousal or moti-
vation of participants at the time of elicitation, just as
naturalistic risk-taking does. This presents both a chal-
lenge to establishing predictive validity and an opportuni-
ty to determine moderators of emotional engagement.

Concluding remarks
There is still a great distance to cover in bridging the gap
between economic and naturalistic risk-taking, which we
suggest will require development of new empirical para-
digms. Many existing paradigms exhibit one or two of the
three criteria suggested above. For instance, most tasks in
the neuroeconomics literature are decomposable but are
not especially predictively valid or emotionally engaging.
By contrast, tasks in the naturalistic side of the divide,
such as the BART and IGT, tend to be emotionally engag-
ing and predictively valid, but not particularly decompos-
able. The ‘near-miss’ paradigm [60,62] provides another
example of an emotionally engaging and externally valid
task that is decomposable; however, it does not entail a
risky decision and thus is not designed to decompose
performance into economic variables related to risk-taking.
We propose that progress in understanding the neural
systems underlying naturalistic (including clinical and
abnormal) risk-taking awaits development of tasks that
fulfill all of these criteria (see also Box 4).
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