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Weighing Risk and Uncertainty
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Decision theory distinguishes between risky prospects, where the probabilities associated with the
possible outcomes are assumed to be known, and uncertain prospects, where these probabilities are
not assumed to be known. Studies of choice between risky prospects have suggested a nonlinear
transformation of the probability scale that overweights low probabilities and underweights moder-
ate and high probabilities. The present article extends this notion from risk to uncertainty by invok-
ing the principle of bounded subadditivity: An event has greater impact when it turns impossibility
into possibility, or possibility into certainty, than when it merely makes a possibility more or less
likely. A series of studies provides support for this principle in decision under both risk and uncer-
tainty and shows that people are less sensitive to uncertainty than to risk. Finally, the article discusses
the relationship between probability judgments and decision weights and distinguishes relative sen-
sitivity from ambiguity aversion.

Decisions are generally made without definite knowledge of
their consequences. The decisions to invest in the stock market,
to undergo a medical operation, or to go to court are generally
made without knowing in advance whether the market will go
up, the operation will be successful, or the court will decide in
one's favor. Decision under uncertainty, therefore, calls for an
evaluation of two attributes: the desirability of possible out-
comes and their likelihood of occurrence. Indeed, much of the
study of decision making is concerned with the assessment of
these values and the manner in which they are—or should be—
combined.

In the classical theory of decision under risk, the utility of
each outcome is weighted by its probability of occurrence. Con-
sider a simple prospect of the form (x, p) that offers a probabil-
ity p to win $jc and a probability 1 — p to win nothing. The
expected utility of this prospect is given by pu(x) + (1 —
p)w(O), where u is the utility function for money. Expected
utility theory has been developed to explain attitudes toward
risk, namely, risk aversion and risk seeking. Risk aversion is de-
nned as a preference for a sure outcome over a prospect with an
equal or greater expected value. Thus, choosing a sure $100
over an even chance to win $200 or nothing is an expression of
risk aversion. Risk seeking is exhibited if a prospect is preferred
to a sure outcome with equal or greater expected value. It is
commonly assumed that people are risk averse, which is ex-
plained in expected utility theory by a concave utility function.

The experimental study of decision under risk has shown that
people often violate both the expected utility model and the
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principle of risk aversion that underlie much economic analysis.
Table 1 illustrates a common pattern of risk seeking and risk
aversion observed in choice between simple prospects (adapted
from Tversky & Kahneman, 1992), where C(x, p) is the me-
dian certainty equivalent of the prospect (x, p). Thus, the upper
left-hand entry in the table shows that the median participant is
indifferent between receiving $14 for sure and a 5% chance of
receiving $100. Because the expected value of this prospect is
only $5, this observation reflects risk seeking.

Table 1 illustrates a fourfold pattern of risk attitudes: risk
seeking for gains and risk aversion for losses of low probability,
coupled with risk aversion for gains and risk seeking for losses
of high probability. Choices consistent with this pattern have
been observed in several studies, with and without monetary
incentives' (Cohen, Jaffray, & Said, 1987; Fishburn & Ko-
chenberger, 1979; Hershey & Schoemaker, 1980; Kahneman &
Tversky, 1979; Payne, Laughhunn, & Crum, 1981; Wehrung,
1989). Risk seeking for low-probability gains may contribute
to the popularity of gambling, whereas risk seeking for high-
probability losses is consistent with the tendency to undertake
risk in order to avoid a sure loss.

Because the fourfold pattern is observed for a wide range of
payoffs, it cannot be explained by the shape of the utility func-
tion as proposed earlier by Friedman and Savage (1948) and by
Markowitz (1952). Instead, it suggests a nonlinear transforma-
tion of the probability scale, first proposed by Preston and Ba-
ratta (1948) and further discussed by Edwards (1962) and oth-
ers. This notion is one of the cornerstones of prospect theory
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992),
which provides the theoretical framework used in the present
article. According to this theory, the value of a simple prospect
that offers a probability p to win $x (and probability 1 — p

1 Risk seeking for long shots was reported by Kachelmeier and She-
hata (1992) in an experiment conducted in China with real payoffs that
were considerably higher than the normal monthly incomes of the
participants.
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to win nothing) is given by w(p)v(x), where v measures the
subjective value of the outcome x, and w measures the impact of
p on the desirability of the prospect. The values of w are called
decision weights; they are normalized so that w(0) = 0, and
w( 1) = 1. It is important to note that w should not be inter-
preted as a measure of degree of belief. A decision maker may
believe that the probability of heads on a toss of a coin is one-
half but give this event a lower weight in the evaluation of a
prospect.

According to prospect theory, the value function v and the
weighting function w exhibit diminishing sensitivity: marginal
impact diminishes with distance from a reference point. For
monetary outcomes, the status quo generally serves as the refer-
ence point that distinguishes gains from losses. Thus, diminish-
ing sensitivity gives rise to an S-shaped value function, with
v(0) = 0, that is concave for gains and convex for losses. For
probability, there are two natural reference points—certainty
and impossibility—that correspond to the endpoints of the
scale. Therefore, diminishing sensitivity implies that increasing
the probability of winning a prize by . 1 has more impact when
it changes the probability of winning from .9 to 1.0 or from 0 to
.1 than when it changes the probability from, say, .3 to .4 or
from .6 to .7. This gives rise to a weighting function that is con-
cave near zero and convex near one. Figure 1 depicts the weight-
ing functions for gains and for losses, estimated from the me-
dian data of Tversky and Kahneman (1992) .2 Such a function
overweights small probabilities and underweights moderate and
high probabilities, which explains the fourfold pattern of risk
attitudes illustrated in Table 1. It also accounts for the well-
known certainty effect discovered by Allais (1953). For exam-
ple, whereas most people prefer a sure $30 to an 80% chance of
winning $45, most people also prefer a 20% chance of winning
$45 to a 25% chance of winning $30, contrary to the substitu-
tion axiom of expected utility theory (Tversky & Kahneman,
1986). This observation is consistent with an S-shaped weight-
ing function satisfying w(.20)/w(.25) a w(.80)/w( 1.0). Such
a function appears to provide a unified account of a wide range
of empirical findings (see Camerer & Ho, 1994).

A choice model that is based on a nonlinear transformation
of the probability scale assumes that the decision maker knows
the probabilities associated with the possible outcomes. With
the notable exception of games of chance, however, these prob-
abilities are unknown, or at least not specified in advance. Peo-
ple generally do not know the probabilities associated with
events such as the guilt of a defendant, the outcome of a football
game, or the future price of oil. Following Knight (1921), deci-

Table 1
The Fourfold Pattern of Risk Attitudes

Probability

Low

High

Gain

C($100, .05) = $14
(risk seeking)

G($ 100, .95) = $78
(risk aversion)

Loss

C(-$100, .05) = -$8
(risk aversion)

C(-$100,.95) = -$84
(risk seeking)

sion theorists distinguish between risky (or chance) prospects
where the probabilities associated with outcomes are assumed
to be known, and uncertain prospects where these probabilities
are not assumed to be known. To describe individual choice
between uncertain prospects, we need to generalize the weight-
ing function from risk to uncertainty. When the probabilities
are unknown, however, we cannot describe decision weights as a
simple transformation of the probability scale. Thus, we cannot
plot the weighting function as we did in Figure 1, nor can we
speak about the overweighting of low probabilities and under-
weighting of high probabilities.

This article extends the preceding analysis from risk to un-
certainty. To accomplish this, we first generalize the weighting
function and introduce the principle of bounded subadditivity.
We next describe a series of studies that demonstrates this prin-
ciple for both risk and uncertainty, and we show that it is more
pronounced for uncertainty than for risk. Finally, we discuss the
relationship between decision weights and judged probabilities,
and the role of ambiguity in choice under uncertainty. An axi-
omatic treatment of these concepts is presented in Tversky and
Wakker( in press).

Theory

Let S be a set whose elements are interpreted as states of the
world. Subsets of S are called events. Thus, S corresponds to the
certain event, and <f> is the null event. A weighting function W
(on S) is a mapping that assigns to each event in S a number
between 0 and 1 such that W(<t>) = 0, W( S) = 1, and W( A) >
W( B) if A D B. Such a function is also called a capacity, or a
nonadditive probability.

As in the case of risk, we focus on simple prospects of the
form (x,.A), which offer $x if an uncertain event A occurs and
nothing if A does not occur. According to prospect theory, the
value of such a prospect is W(A)v(x), where W7 is the decision
weight associated with the uncertain event A. (We use Wfor
uncertainty and w for risk.) Because the present treatment is
confined to simple prospects with a single positive outcome, it
is consistent with both the original and the cumulative versions
of prospect theory (Tversky & Kahneman, 1992). It is consis-
tent with expected utility theory if and only if Wis additive, that
is, W(A\JB) = W(A) + W(B) whenever^ O5 = 0.3

Prospect theory assumes that W satisfies two conditions.
(i) Lower subadditivity: W(A)^W(A\J B)- W(B), pro-

vided A and B are disjoint and W( A U B) is bounded away from
one.4 This inequality captures the possibility effect: The impact
of an event A is greater when it is added to the null event than
when it is added to some nonnull event B.

(ii) Upper subadditivity: W(S) - W(S- A) > W(A U B)
— W( B), provided A and B are disjoint and W( B) is bounded

Note. C is the median certainty equivalent of the prospect in question.

2 Figure 1 corrects a minor error in the original drawing.
3 For other discussions of decision weights for uncertain events, see

Hogarth and Einhorn (1990), Viscusi (1989), and Wakker (1994).
. 4 The boundary conditions are needed to ensure that we always com-
pare an interval that includes an endpoint to an interval that is bounded
away from the other endpoint (see Tversky & Wakker, in press, for a
more rigorous formulation).
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Figure 1. Weighting functions for gains (w+) and losses (w-).

away from zero.5 This inequality captures the certainty effect:
The impact of an event A is greater when it is subtracted from
the certain event S than when it is subtracted from some uncer-
tain event A\J B.

A weighting function W satisfies bounded subadditivity, or
subadditivity (SA) for short, if it satisfies both (i) and (ii) above.
According to such a weighting function, an event has greater
impact when it turns impossibility into possibility or possibility
into certainty than when it merely makes a possibility more or
less likely. To illustrate, consider the possible outcome of a foot-
ball game. Let H denote the event that the home team wins the
game, V denote the event that the visiting team wins, and T
denote a tie. Hence, S = H U V U T. Lower SA implies that
W(T) exceeds W(H\JT)- W(H), whereas upper SA im-
plies that W(H\JV\JT)-W(HW) exceeds W( H U T) -
W( H). Thus, adding the event T(a tie) to <t> has more impact
than adding Tlo H, and subtracting Tfrom 5has more impact
than subtracting T from HUT. These conditions extend to
uncertainty the principle that increasing the probability of win-
ning a prize from 0 to p has more impact than increasing the
probability of winning from q to q + p, and decreasing the prob-
ability of winning from 1 to 1 — p has more irrlpact than de-
creasing the probability of winning from q + p to q. To investi-
gate these properties empirically, consider four simple pros-
pects, each of which offers a fixed prize if a particular event (H,
T,H(J V,orH U T) occurs and nothing if it does not. By asking

people to price these prospects, we can estimate the decision
weights associated with the respective events and test both lower
and upper SA, provided the value function is scaled
independently.

Several comments concerning this analysis are in order. First,
risk can be viewed as a special case of uncertainty where prob-
ability is defined through a standard chance device so that the
probabilities of outcomes are known. Under this interpretation,
the S-shaped weighting function of Figure 1 satisfies both lower
and upper SA. Second, we have defined these properties in
terms of the weighting function Wihat is not directly observ-
able but can be derived from preferences (see Wakker & Tver-
sky, 1993). Necessary and sufficient conditions for bounded SA
in terms of the observed preference order are presented by Tver-
sky and Wakker (in press) in the context of cumulative prospect
theory. Third, the concept of bounded SA is more general than
the property of diminishing sensitivity, which gives rise to a
weighting function that is concave for relatively unlikely events
and convex for relatively likely events. Finally, there is evidence
to suggest that the decision weights for complementary events
typically sum to less than one, that is, W( A) + W( S - A) < 1
or equivalently, W(A) <; W(S)- W(S- A). This property,

5 The upper subadditivity of W'K equivalent to the lower subadditivity
of the dual function W(A)= l-W(S-A).
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Table 2
A Demonstration ofSubadditivity in Betting on the Outcome of
a Stanford-Berkeley Football Game

Events

Problem Option
Preference

D

1

2

3

fi
Si

f2

g2

fj

g3

$25
0

0
$10

$25
$10

0
0

0
$10

0
$10

0
$10

0
0

0
$10

0
$10

$25
0

$25
$10

61
39

66
34

29
71

Note. A = Stanford wins by 7 or more points; B = Stanford wins by
less than 7 points; C = Berkeley ties or wins by less than 7 points; D =
Berkeley wins by 7 or more points. Preference = percentage of respon-
dents (N = 112) that chose each option.

called subcertainty (Kahneman & Tversky, 1979), can also be
interpreted as evidence that upper SA has more impact than
lower SA; in other words, the certainty effect is more pro-
nounced than the possibility effect. Some data consistent with
this property are presented below.

An Illustration

We next present an illustration of SA that yields a new viola-
tion of expected utility theory. We asked 1 12 Stanford students
to choose between prospects denned by the outcome of an up-
coming football game between Stanford and the University of
California at Berkeley. Each participant was presented with
three pairs of prospects, displayed in Table 2. The percentage of
respondents who chose each prospect appears on the right. Half
of the participants received the problems in the order presented
in the table; the other half received the problems in the opposite
order. Because we found no significant order effects, the data
were pooled. Participants were promised that 10% of all respon-
dents, selected at random, would be paid according to one of
their choices.

Table 2 shows that, overall, fi was chosen over g! , f2 over g2,
and g3 over f3. Furthermore, the triple (f, , f2, g3) was the single
most common pattern, selected by 36% of the respondents. This
pattern violates expected utility theory, which implies that a
person who chooses f] over gi and f2 over g2 should also choose
f3 over g3. However, 64% of the 55 participants who chose fi
and f2 in Problems 1 and 2 chose g3 in Problem 3, contrary to
expected utility theory. This pattern, however, is consistent with
the present account. To demonstrate, we apply prospect theory
to the modal choices in Table 2. The choice off] overgi in Prob-
lem 1 implies that

Similarly, the choice of f2 over g2 in Problem 2 implies that

v(25)W(D)>v(lO)W(AUB).

Adding the two inequalities and rearranging terms yields

3 W(A)+ W(D) u ( lO)
W(A\JB) + W(CUD) > v(25) '

On the other hand, the choice of g3 over f3 in Problem 3 implies
that

v(\0)W(A\JB\JCL)D)>v(25)W(A(JD),

D(10) W(AUD)
u(25) W(AUBUCUD)

Consequently, the modal choices imply

5 f ¥ ( A ) + W(D) W(AUD)
W(AUB) + W(C\JD)> W(AUBUCUD)'

It can be shown that this inequality is consistent with a
subadditive weighting function. Moreover, the inequality fol-
lows from such a weighting function, provided that subcertainty
holds. To demonstrate, note that according to lower SA, W{ A)
+ W( D) S: W(A U D). Furthermore, it follows from subcer-
tainty that

(j W(AUB) + W(CVD)< W(AUBUCUD)^ I.

Thus, the left-hand ratio exceeds the right-hand ratio, in accord
with the modal choices. Note that under expected utility theory
Wis an additive probability measure, hence the left-hand ratio
and the right-hand ratio must be equal.

Relative Sensitivity

As noted earlier, prospect theory assumes SA for both risk
and uncertainty. We next propose that this effect is stronger for
uncertainty than for risk. In other words, both lower and upper
SA are amplified when outcome probabilities are not specified.

To test this hypothesis, we need a method for comparing
different domains or sources of uncertainty (e.g., the outcome
of a football game or the spin of a roulette wheel ) . Consider two
sources, A and B , and suppose that the decision weights for both
sources satisfy bounded subadditivity. We say that the decision
maker is less sensitive to B than to A if the following two condi-
tions hold for all disjoint events A\ , A2 in A, and BI , B2 in B,
provided all values of Ware bounded away from 0 and 1 .

l f W ( B { ) = W(At)and7

W(S-B2) = W(S-A2),

W(S-[A1UA2}). (2)

The first condition says that the union of disjoint events from
B "loses" more than the union of matched events from A. The
second condition imposes the analogous requirement on the
dual function. Thus, a person is less sensitive6 to B than to A if
B produces more lower SA and more upper SA than does A .

This definition can be readily stated in terms of preferences.

6 Relative sensitivity is closely related to the concept of relative curva-
ture for subjective dimensions introduced by Krantz and Tversky
(1975).
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Table 3
Outline of Studies

Study 1 Study 2 Study 3

Participants

Sources

NBA fans
(N=21)

Chance
NBA playoffs
San Francisco temperature

NFL fans
(# = 40)

Chance
Super Bowl
Dow-Jones

Psychology students
(N=45)

Chance
San Francisco temperature
Beijing temperature

Note. NBA = National Basketball Association; NFL = National Football League.

To illustrate, consider a comparison between uncertainty and
chance.7 Suppose B\ and B2 are disjoint uncertain events (e.g.,
the home team wins or the home team ties a particular football
game). Let A \ and A2 denote disjoint chance events (e.g., a rou-
lette wheel landing red or landing green). The hypothesis that
people are less sensitive to the uncertain source B than to the
chance source A implies the following preference condition. If
one is indifferent between receiving $50 if the home team wins
the game or if a roulette wheel lands red (p = 18/38), and if
one is also indifferent between receiving $50 if the home team
ties the game or if a roulette wheel lands green (i.e., zero or
double zero, p = 2/38), then one should prefer receiving $50 if
a roulette wheel lands either green or red (p = 20/38) to receiv-
ing $50 if the home team either wins or ties the game.

The following studies test the two hypotheses discussed
above. First, decision makers exhibit bounded subadditivity un-
der both risk and uncertainty. Second, decision makers are gen-
erally less sensitive to uncertainty than to risk.

Experimental Tests

We conducted three studies using a common experimental
paradigm. On each trial, participants chose between an uncer-
tain (or risky) prospect and various cash amounts. These data
were used to estimate the certainty equivalents of each prospect
(i.e., the sure amount that the participant considers as attractive
as the prospect) and to derive decision weights. The basic fea-
tures of the studies are outlined in Table 3.

Method

Participants. The participants in the first study were 27 male Stan-
ford students (median age = 21) who responded to advertisements call-
ing for basketball fans to take part in a study of decision making. Partic-
ipants received $15 for participating in two 1-hour sessions, spaced a
few days apart. The participants in the second study were 40 male foot-
ball fans (median age = 21), recruited in a similar manner. They were
promised that in addition to receiving $ 15 for their participation in two
1-hour sessions, some of them would be selected at random to play one
of their choices for real money. The participants in the third study were
45 Stanford students enrolled in an introductory psychology course (28
men, 17 women, median age = 20) who took part in a 1-hour session
for course credit. The responses of a few additional participants (one
from Study 1, four from Study 2, and three from Study 3) were excluded
from the analysis because they exhibited a great deal of internal incon-
sistency. We also excluded a very small number of responses that were
completely out of line with an individual's other responses.

Procedure. The experiment was run using a computer. Each trial
involved a series of choices between a prospect that offered a prize con-
tingent on chance or an uncertain event (e.g., a 25% chance to win a
prize of $150) and a descending series of sure payments (e.g., receive
$40 for sure). In Study 1, the prize was always $75 for half the respon-
dents and $150 for the other half; in Studies 2 and 3, the prize for all
respondents was $150. Certainty equivalents were inferred from two
rounds of such choices. The first round consisted of six choices between
the prospect and sure payments, spaced roughly evenly between $0 and
the prize amount. After completing the first round of choices, a new
set of seven sure payments was presented, spanning the narrower range
between the lowest payment that the respondent had accepted and high-
est payment that the respondent had rejected. The program enforced
internal consistency. For example, no respondent was allowed to prefer
$30 for sure over a prospect and also prefer the same prospect over a
sure $40. The program allowed respondents to backtrack if they felt
they had made a mistake in the previous round of choices.

The certainty equivalent of each prospect was determined by a linear
interpolation between the lowest value accepted and the highest value
rejected in the second round of choices. This interpolation yielded a
margin of error of ±$2.50 for the $150 prospects and ±$1.25 for the
$75 prospects. We wish to emphasize that although our analysis is based
on certainty equivalents, the data consisted of a series of choices be-
tween a given prospect and sure outcomes. Thus, respondents were not
asked to generate certainty equivalents; instead, these values were in-
ferred from choices.

Each session began with detailed instructions and practice. In Study
1, the first session consisted of chance prospects followed by basketball
prospects; the second session replicated the chance prospects followed
by prospects defined by a future temperature in San Francisco. In Study
2, the first session consisted of chance prospects followed by Super Bowl
prospects; the second session replicated the chance prospects followed
by prospects defined by a future value of the Dow-Jones index. Study 3
consisted of a single session in which the chance prospects were followed
by prospects defined by a future temperature in San Francisco and Bei-
jing; the order of the latter two sources was counterbalanced. The order
of the prospects within each source was randomized.

Sources of uncertainty. Chance prospects were described in terms
of a random draw of a single poker chip from an urn containing 100
chips numbered consecutively from 1 to 100. Nineteen prospects of the
form (x, p) were constructed where p varied from .05 to .95 in multiples
of .05. For example, a typical chance prospect would pay $150 if the
number of the poker chip is between 1 and 25, and nothing otherwise.
This design yields 90 tests of lower SA and 90 tests of upper SA for each
participant.

7 Although probabilities could be generated by various chance de-
vices, we do not distinguish between them here, and treat risk or chance
as a single source of uncertainty.
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Utah Wins 18 12 0 12 18 Portland Wins

Figure 2. Event space for prospects denned by the result of the Utah-Portland basketball game. The
horizontal axis refers to the point spread in that game. Each row denotes a target event that defines a
prospect used in Study 1. Segments that extend up to the arrowhead represent unbounded intervals. Each
interval includes the more extreme endpoint relative to 0, but not the less extreme endpoint.

Basketball prospects were denned by the result of the first game of
the 1991 National Basketball Association (NBA) quarter final series
between the Portland Trailblazers and the Utah Jazz. For example, a
typical prospect would pay $ 150 if Portland beats Utah by more than 6
points. The event space is depicted in Figure 2. Each of the 32 rows in
the figure represents a target event A that defines an uncertain prospect
(x, A). For example, the top row in Figure 2, which consists of two
segments, represents the event "the margin of victory exceeds 6 points."
This design yields 28 tests of lower SA and 12 tests of upper SA. For
example, one test of lower SA is obtained by comparing the decision
weight for the event "Utah wins" to the sum of the decision weights for
the two events "Utah wins by up to 12 points" and "Utah wins by more
than 12 points."

Super Bowl prospects were defined by the result of the 1992 Super
Bowl game between the Buffalo Bills and the Washington Redskins. The
event space is depicted in Figure 3. It includes 28 target events yielding
30 tests of lower SA and 17 tests of upper SA.

Dow-Jones prospects were defined by the change in the Dow-Jones
Industrial Average over the subsequent week. For example, a typical
prospect would pay $150 if the Dow-Jones goes up by more than 50
points over the next seven days. The event space has the same structure
as that of the Super Bowl (Figure 3).

San Francisco temperature prospects were defined by the daytime
high temperature in San Francisco on a given future date. The 20 target
events used in Studies 1 and 3 are depicted in Figure 4. This design
yields 30 tests of lower SA and 10 tests of upper SA. For example, a
typical prospect would pay $75 if the daytime high temperature in
downtown San Francisco on April 1, 1992, is between 65° and 80°. Sim-
ilarly, Beijing temperature prospects were defined by the daytime high
temperature in Beijing on a given future day. The event space is identical
to the San Francisco temperature in Study 3, as depicted in Figure 4.

estimated the certainty equivalent C of each prospect by linear
interpolation, as described earlier. According to prospect the-
ory, if C(x,,4)=j;, then i>(}>) = W(A)v(x)andW(A) = v(y)/
v(x). The decision weight associated with an uncertain event
A, therefore, can be computed if the value function v for gains
is known. Previous studies (e.g., Tversky, 1967) have indicated
that the value function for gains can be approximated by a
power function of the form v(x) — x", 0 s a < 1. This form is
characterized by the assumption that multiplying the prize of a
prospect by a positive constant multiplies its certainty equiva-
lent by the same constant.8 This prediction was tested using the
data from Study 1 in which each event was paired both with a
prize of $75 and with a prize of $150. Consistent with a power
value function, we found no significant difference between
C( 150, A) and 2C( 75, A) for any of the sources.

Although the present data are consistent with a power func-
tion, the value of the exponent cannot be estimated from simple
prospects because the exponent a can be absorbed into W. To
estimate the exponent for gains, we need prospects with two
positive outcomes. Such prospects were investigated by Tversky
and Kahneman (1992), using the same experimental proce-
dure and a similar subject population. They found that esti-
mates of the exponent did not vary markedly across respon-
dents and the median estimate of the exponent was .88. In the
analysis that follows, we first assume a power value function
with an exponent of .88 and test lower and upper SA using this
function. We then show that the test of SA is robust with respect
to substantial variations in the exponent. Further analyses are

Results

To test lower and upper SA, the decision weights for each re-
spondent were derived as follows. Using the choice data, we first

8 This follows from the fact that for t > 0, the value of the prospect
(tx, A) is W(A) (tx)°; hence, C(tx, A) = JV(A)"" (x, which equals
tC(x,A).'
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Buffalo wins 21 14 7 0 7 14 21 Washington wins

Dow-Jones down 150 100 50 0 50 100 150 Dow-Jones up

Figure 3. Event space for prospects denned by the result of the Super Bowl game between Washington and
Buffalo (and for the Dow-Jones prospects). The horizontal axis refers to the point spread in the Super Bowl
(and the change in the Dow-Jones in the next week). Each row denotes a target event that defines a prospect
used in Study 2. Segments that extend up to the arrowhead represent unbounded intervals. Each interval
includes the more extreme endpoint relative to 0, but not the less extreme endpoint.

based on an ordinal method that makes no assumption about
the functional form oft).

Using the estimated Wfor each source of uncertainty, we de-
fine measures of the degree of lower and upper SA as follows.
Recall that lower SA requires that W(A) > W(A U B) -
W(B),forAr\B = <t>. Hence, the difference between the two
sides of the inequality,

)^ W(A)+ W(B)- W(AUB),

provides a measure of the degree of lower SA. Similarly, recall

that upper SA requires that 1 - W(S - A) ;> W(A U B) -
W( B), for A n B = <t>. Hence, the difference between the two
sides of the inequality,

° D'(A,B)= 1 - W(S-A)- W(A\JB)+ W(B),

provides a measure of the degree of upper SA.
Table 4 presents the overall proportion of tests, across partic-

ipants, that strictly satisfy lower and upper SA (i.e., D>0,D'>
0) for each source of uncertainty. Note that if ffwere additive
(as implied by expected utility theory), then both D and D' are

Study 1 60'

Study 3 40 <

65'

50'

70'

60'

75'

70'

80'

80'

Figure 4. Event space for prospects defined by future temperatures in San Francisco and Beijing. The
horizontal axis refers to the daytime high temperature on a given date. Each row denotes a target event that
defines a prospect used in Studies 1 and 3. Segments that extend up to the arrowhead represent unbounded
intervals. Each interval includes the left endpoint but not the right endpoint.
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Table 4
Proportion of Tests That Strictly Satisfy Lower
and Upper Subadditivity (SA)

Study 1 Study 2 Study 3

Source
Lower Upper Lower Upper Lower Upper

SA SA SA SA SA SA

Chance
Basketball
Super Bowl
Dow-Jones
S.F. temp.
Beijing temp.

.80

.88

.83

.81

.83

.89

.77

.86

.77

.83

.87

.87

.81

.85

.89

.79

.89

.91

Note. S.F. = San Francisco; temp. = temperature.

expected to be zero; hence, all entries in Table 4 should be close
to one-half. However, each entry in Table 4 is significantly
greater than one-half (p < .01, by a binomial test), as implied
bySA.

To obtain global measures of lower and upper SA, let d and
d', respectively, be the mean values of D and D' for a given re-
spondent. Besides serving as summary statistics, these indexes
have a simple geometric interpretation if the risky weighting
function is roughly linear except near the endpoints. It is easy
to verify that within the linear portion of the graph, D and D'
do not depend on A and B, and the summary measures d and d'
correspond to the "lower" and "upper" intercepts of the weight-
ing function (see Figure 5). Its slope, j = 1 — d — d', can then
be interpreted as a measure of sensitivity to probability changes.

Stated Probability (p)
Figure 5. A weighting function that is linear except near the endpoints
(d = "lower" intercept of the weighting function; d' = "upper" intercept
of the weighting function; s = slope).

For uncertainty, we cannot plot d and d' as in Figure 5. However,
d and d' have an analogous interpretation as a "possibility gap"
and "certainty gap," respectively, if W is roughly linear except
near the endpoints.9 Note that under expected utility theory, d
= d' = 0 and 5 = 1 , whereas prospect theory implies d^0,d'>
0, and 5 =s 1. Thus, prospect theory implies less sensitivity to
changes in uncertainty than is required by expected utility the-
ory. To test these predictions, we computed the values of d, d',
and s, separately for each respondent. Table 5 presents the me-
dian values of these indexes, across respondent for each source
of uncertainty.

In accord with SA, each value of d and d' in Table 5 is sig-
nificantly greater than zero (p < .05). Furthermore, both in-
dexes are larger for uncertainty than for chance: The mean val-
ues of d and of d' for the uncertain sources are significantly
greater than each of the corresponding indexes for chance (p <
.01, separately for each study). Finally, consistent with subcer-
tainty, d' tends to exceed d, though this difference is statistically
significant only in Studies 2 and 3 (p < .05).

Recall that all participants evaluated the same set of risky
prospects, and that respondents in each of the three studies eval-
uated two different types of uncertain prospects (see Table 3).
Figure 6 plots, for each respondent, the average sensitivity mea-
sure s for the two uncertain sources against s for the risky
source. (One respondent who produced a negative s was ex-
cluded from this analysis.) These data may be summarized as
follows. First, all values of s for the uncertain prospects and all
but two values of s for the risky prospects were less than or equal
to one as implied by SA. Second, the values of s are considerably
higher for risk (mean s = .74) than for uncertainty (mean 5 =
.53), as demonstrated by the fact that 94 out of 111 points lie
below the identity line (p < .01 by a sign test). Third, the data
reveal a significant correlation between the sensitivity measures
for risk and for uncertainty (r = .37, p < .01). The average
correlation between the uncertain sources is .40. If we restrict
the analysis to Studies 1 and 2 that yielded more stable data (in
part because the risky prospects were replicated), the correla-
tion between sensitivity for risk and for uncertainty increases to
.51, and the mean correlation between the uncertain sources
increases to .54. These correlations indicate the presence of
consistent individual differences in SA and suggest that sensitiv-
ity to uncertainty is an important attribute that distinguishes
among decision makers. An axiomatic analysis of the conditions
under which one individual is consistently more SA than an-
other is presented in Tversky and Wakker (in press).

Robustness. The preceding analysis summarized in Table 5
assumes a power value function with an exponent a = .88. To
investigate whether the above conclusions depend on the partic-
ular choice of the exponent, we reanalyzed the data using
different values of a varying from one-half to one. To appreciate
the impact of this difference, consider the prospect that offers a
one-third chance to win $100. [We choose one-third because,
according to Figure 1, w( 1 / 3) is approximately one-third.] The
certainty equivalent of this prospect is $33.33 if a = 1, but it is

9 More formally, this holds when W(A U B) - W(A) does not de-
pend on A, for all A n B = <t>, provided W(A) is not too close to zero
and W( A U B) is not too close to 1.
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Figure 6. Joint distribution for all respondents of the sensitivity measure s for risk and uncertainty.

only $11.11 if a = .5. Table 6 shows that as a decreases
(indicating greater curvature), d increases and d' decreases.
More important, however, both dand d' are positive throughout
the range for all sources, and the values of s are significantly
smaller than one (p < .01) in all cases. SA, therefore, holds for
a fairly wide range of variation in the curvature of the value
function.

Ordinal analysis. The preceding analysis confirmed our hy-
pothesis that people are less sensitive to uncertainty than to
chance using the sensitivity measure s. We next turn to an ordi-

Table 5
Median Values ofd, d', and s, Across Respondents, Measuring
the Degree of Lower and Upper Subadditivity (SA)
and Global Sensitivity, Respectively

Study :

Source

Chance
Basketball
Super Bowl
Dow-Jones
S.F. temp.
Beijing temp.

d

.06

.21

.20

d'

.10

.19

.26

1

s

.81

.61

.51

Study 2

d

.05

.15

.12

d' s

.19 .75

.23 .57

.22 .67

Study 3

d

.11

.27

.28

d'

.14

.23

.32

s

.72

.50

.42

nal test of this hypothesis that makes no assumptions about the
value function. Let Bl, B^ denote disjoint uncertain events, and
let A!, A2 denote disjoint chance events. We searched among the
responses of each participant for patterns satisfying

C(x, BI) ;> C(x, At)and C(x, B2) ^ C(x, A2)

butC(x,Bi\JB2)<C(x,AlUA2), (3)

or

Note. S.F. = San Francisco; temp. = temperature.

andC(x,S-B2)^C(x,S-A2)

butC(x,S-[Bt\JB2])>C(x,S-[Ai\JA2]). (4)

A response pattern that satisfies either condition 3 or 4 provides
support for the hypothesis that the respondent is less sensitive
to uncertainty (B) than to chance (A).

Several comments regarding this test are in order. First, note
that if we replace the weak inequalities in conditions 3 and 4
with equalities, then these conditions reduce to the definition of
relative sensitivity (see Equations 1 and 2). The above condi-
tions are better suited for the present experimental design be-
cause participants were not asked to "match" intervals from
different sources. Second, the present analysis is confined to
contiguous intervals; conditions 3 and 4 may not hold when
comparing contiguous to noncontiguous intervals (see Tversky
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& Koehler, 1994). Third, because of measurement error, the
above conditions are not expected to hold for all comparisons;
however, the conditions indicating less sensitivity to uncertainty
than to chance are expected to be satisfied more frequently than
the opposite conditions.

Let M(E, A) be the number of response patterns that satisfy
condition 3 above (i.e., less sensitivity to uncertainty than to
chance). Let M( A, B) be the number of response patterns that
satisfy 3 with the As and Bs interchanged (i.e., less sensitivity to
chance than to uncertainty). The ratio m(B, A) = M(B, A)/
(Af(B,A) + M(A,B)) provides a measure of the degree to
which a respondent is less sensitive to uncertainty than to
chance, in the sense of condition 3. We define M'( B, A), M' (A,
B), and m'(B, A) similarly for preference patterns that satisfy
condition 4. If the respondent is invariably less sensitive to B
than to A, then the ratios m(B, A) and m'(B, A) should be
close to one. On the other hand, if the respondent is not more
sensitive to one source than to another, these ratios should be
close to one-half. Table 7 presents the median ratios, across re-
spondent, comparing each of the five uncertain sources to
chance. As predicted, all entries in the table are significantly
greater than one-half (p < .05, by t tests), indicating that people
are generally less sensitive to uncertainty than to chance.

We conclude this section with a brief methodological discus-
sion. We have attributed the findings of bounded subadditivity
and lower sensitivity for uncertainty than for risk to basic psy-
chological attitudes toward risk and uncertainty captured by
the weighting function. Alternatively, one might be tempted to
account for these findings by a statistical model that assumes
that the assessment of certainty equivalents, and hence the esti-
mation of decision weights, is subject to random error that is
bounded by the endpoints of the outcome scale, because C(x,
A) must lie between 0 and x. Although bounded error could
contribute to SA, this model cannot adequately account for the
observed pattern of results. First, it cannot explain the subad-
ditivity observed in simple choice experiments that do not in-
volve (direct or indirect) assessment of certainty equivalents,
such as the Stanford-Berkeley problem presented in Table 2.
More extensive evidence for both lower and upper SA in simple
choices between risky prospects is reported by Wu and Gonza-
lez (1994), who also found some support for the stronger hy-
pothesis that w is concave for low probabilities and convex for
moderate and high probabilities. Second, a statistical model
cannot readily account for the result of the ordinal analysis re-
ported above that respondents were less sensitive to uncertainty
than to chance. Third, because a random error model implies a
bias toward one-half, it cannot explain the observation that the
decision weight of an event that is as likely as not to occur is
generally less than one-half (see Figures 7, 8, and 9 below). Fi-
nally, it should be noted that subadditivity and differential sen-
sitivity play an important role in the pricing of risky and uncer-
tain prospects, regardless of whether these phenomena are
driven primarily by psychological or by statistical factors.

Discussion

The final section of this article addresses three topics. First,
we explore the relationship between decision weights and

Table 6
Median Values ofd, d', and s Across Respondents, Measuring
the Degree of Lower Subadditivity, Upper Subadditivity,
and Global Sensitivity, Respectively,
for Several Values of a Between .5 and I

Source and index

Chance (Study 1)
d
d'
s

Chance (Study 2)
d
d'
s

Chance (Study 3)
d
d'
s

Basketball
d
d1

s
Super Bowl

d
d'
s

Dow-Jones
d
d'
s

SF temp (Study 1)
d
d'
s

SF temp (Study 3)
d
d'
s

Beijing temp
d
d'
s

0.500

.29

.02

.66

.28

.09

.66

.33

.05

.59

.40

.10

.50

.36

.15

.49

.34

.12

.54

.40

.15

.42

.47

.15

.39

.48

.2!

.33

0.625

.19

.05

.73

.18

.12

.70

.24

.08

.65

.33

.14

.56

.28

.18

.54

.25

.15

.61

.32

.18

.48

.39

.18

.43

.40

.25

.38

a

0.750

.12

.07

.77

.11

.15

.74

.17

.11

.69

.26

.17

.58

.20

.20

.55

.17

.19

.64

.26

.22

.49

.33

.20

.48

.34

.29

.42

0.875

.06

.10

.81

.05

.19

.75

.11

.14

.72

.21

.19

.61

.15

.23

.57

.11

.22

.67

.20

.26

.51

.27

.23

.50

.28

.32

.42

1.00

.01

.12

.83

.003

.23

.75

.06

.17

.75

.16

.22

.63

.11

.25

.60

.07

.25

.70

.15

.30

.52

.22

.26

.52

.23

.35

.43

Note. SF = San Francisco; temp = temperature.

judged probabilities. Second, we investigate the presence of
preferences for betting on particular sources of uncertainty. Fi-
nally, we discuss descriptive and normative implications of the
present results.

Preference and Belief

The present account distinguishes between decision weights
derived from preferences and degree of belief expressed by
probability judgments. What is the relation between the judged
probability, P(A), of an uncertain event, A, and its associated
decision weight W(A)'? To investigate this problem, we asked
respondents, after they completed the choice task, to assess the
probabilities of all target events. Following the analysis of deci-
sion weights, we define measures of the degree of lower and up-
per SA in probability judgments as follows:
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Table8
Median Values ofd, d', and s, Across Respondents, That Measure the Degree of Lower and
Upper Subadditivity, SA, and Global Sensitivity, Respectively, for Judged Probability

Source

Basketball
Super Bowl
Dow-Jones
S.F. temp.
Beijing temp.

d

.08

.13

Study 1

d' s d

.11 .74
.11
.07

.16 .70

Study 2

d'

.08

.08

s d

.81

.84
.29
.24

Study 3

d'

.21

.25

5

.51

.53

Note. SA = Subadditivity; S.F. = San Francisco; temp. = temperature; 5 = degree of global sensitivity.

D(A, B) = P(A ) + P(B)- P(A U B),

D'(A,B)= 1 -P(S-A) + P(B)-P(AUB),

provided A fl B = (j>. Clearly, P is additive if and only if D = D'
= 0 for all disjoint A, B in 5. As before, let d and d' be the mean
values of D and D', respectively, and let i = 1 — d— d'. Table 8,
which is the analog of Table 5, presents the median values of
d, d', and s, across respondents, for each of the five uncertain
sources.

All values of d and d' in Table 8 are significantly greater than
zero (p < .05), demonstrating both lower and upper SA for
probability judgments. Comparing Table 8 and Table 5 reveals
that the values o f s for judged probabilities (overall mean .70)
are greater than the corresponding uncertain decision weights
(overall mean .55). Thus, probability judgments exhibit less SA
than do uncertain decision weights. This finding is consistent
with a two-stage process in which the decision maker first as-
sesses the probability P of an uncertain event A, then
transforms this value by the risky weighting function w. Thus,
W( A) may be approximated by w[P(A)].

We illustrate this model using the median risky and uncertain
decision weights derived from Study 2 (assuming a = .88). In
Figure 7 we plot decision weights for chance prospects as a func-
tion of stated (objective) probabilities. In Figures 8 and 9, re-
spectively, we plot decision weights for Super Bowl prospects
and for Dow-Jones prospects as functions of (median) judged

Table 7
Ordinal Analysis of Differential Sensitivity

Study 1

Source comparison

Basketball vs. chance
Super Bowl vs. chance
Dow- Jones vs. chance
S.F. temp. vs. chance
Beijing temp. vs. chance

m

.85

.76

m'

.64

.93

Study 2 Study 3

m m' m

.91 .89

.79 .76
.87
.83

rri

.87

.94

probabilities. The comparison of these figures reveals that the
data in Figures 8 and 9 are less orderly than those in Figure 7.
This is not surprising because judged probability (unlike stated
probability) is measured with error, and because the uncertain
decision weights exhibit greater variability (both within and be-
tween subjects) than risky decision weights. However, the un-
derlying relation between probability and decision weights is
nearly identical in the three figures.10 This is exactly what we
would expect if the uncertain weighting function H^is obtained
by applying the risky weighting function w to judged
probabilities.

The Subadditivity of probability judgments reported in Table
8 is consistent with support theory" (Tversky & Koehler,
1994), according to which P(A) + P(B)^P(A\J B). The com-
bination of the two-stage model (which is based on prospect
theory) with an analysis of probability judgments (which is
based on support theory) can therefore explain our main find-
ing that decision weights are more subadditive for uncertainty
than for chance. This model also implies that the decision
weight associated with an uncertain event (e.g., an airplane
accident) increases when its description is unpacked into its
constituents (e.g., an airplane accident caused by mechanical
failure, terrorism, human error, or acts of God; see Johnson,
Hershey, Meszaros, & Kunreuther, 1993). Furthermore, this
model predicts greater Subadditivity, ceteris paribus, when A U
B is a contiguous interval (e.g., future temperature between 60°
and 80°) than when A U B is not a contiguous interval (e.g.,
future temperature less than 60° or more than 80°). A more
detailed treatment of this model will be presented elsewhere.

Source Preference

The finding that people are less sensitive to uncertainty than
to risk should be distinguished from the observation of ambigu-

Note. Each entry corresponds to the median value, across respon-
dents, of m and m1 measuring the degree to which respondents are less
sensitive to uncertainty than to chance. S.F. = San Francisco; temp. =
temperature.

10 The smooth curves in Figures 5 and 6 were obtained by fitting the
parametric form w(p) = &p~l/(&p'1 + [1 - p]T), used by Lattimore,
Baker, and Witte (1992). It assumes that the relation between w and p
is linear in a log odds metric. The estimated values of the parameters in
Figures 7, 8, and 9, respectively, are .69, .69, and .72 for y, and .77, .76,
and .76 for 8.

" In this theory, P(A) + P(S-A) = 1; hence, the equations for lower
and upper SA coincide.
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Figure 7. Median decision weights for chance prospects, from Study 2, plotted as a function of stated
(objective) probabilities.

ity aversion: People often prefer to bet on known rather than
unknown probabilities (Ellsberg, 1961). For example, people
generally prefer to bet on either side of a fair coin than on either
side of a coin with an unknown bias. These preferences violate
expected utility theory because they imply that the sum of the
subjective probabilities of heads and of tails is higher for the
unbiased coin than for the coin with the unknown bias.

Recent research has documented some significant exceptions
to ambiguity aversion. Heath and Tversky (1991) showed that
people who were knowledgeable about sports but not about pol-
itics preferred to bet on sports events rather than on chance
events that these people had judged equally probable. However,
the same people preferred to bet on chance events rather than
on political events that they had judged equally probable. Like-
wise, people who were knowledgeable about politics but not
about sports exhibited the reverse pattern. These data support
what Heath and Tversky call the competence hypothesis: People
prefer to bet on their beliefs in situations where they feel com-
petent or knowledgeable, and they prefer to bet on chance when
they feel incompetent or ignorant. This account is consistent
with the preference to bet on the fair rather than the biased coin,
but it predicts additional preferences that are at odds with am-
biguity aversion.

The preceding studies allow us to test the competence hy-
pothesis against ambiguity aversion. Recall that the participants
in Studies 1 and 2 were recruited for their knowledge of basket-

ball and football, respectively. Ambiguity aversion implies a
preference for chance over uncertainty because the probabili-
ties associated with the sports events (e.g., Utah beating
Portland) are necessarily vague or imprecise. In contrast, the
competence hypothesis predicts that the sports fans will prefer
to bet on the game than on chance.

To establish source preference, let A and B be two different
sources of uncertainty. A decision maker is said to prefer source
A to source B if for any events A in A and B in B. W( A) =
W( B) implies W( S - A) > W( S - B), or equivalently, C(x,
A) = C(x, B) implies C(x, S-A)> C(x, S-B),x>0. To
test for source preference we searched among the responses of
each participants for patterns that satisfy C(x, A) s C(x, B)
and C(x, S - A)> C(x, S - B). Thus, a decision maker who
prefers to bet on event A than to bet on event B, and also prefers
to bet against A than to bet against B exhibits a preference for
source A over source B. The preference to bet on either side of
a fair coin rather than on either side of a coin with an unknown
bias illustrates such a preference for chance over uncertainty.

Let K( A, B) be the number of response patterns indicating a
preference for source A over source B, as defined above, and
let K(B, A) be the number of response patterns indicating the
opposite preference. For each pair of sources, we computed the
ratio k(\, B) = K(\, B)/(tf(A, B) + K(B, A)), separately
for each respondent. This ratio provides a comparative index of
source preference; it should equal one-half if neither source is
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Figure 8. Median decision weights for Super Bowl prospects, from Study 2, plotted as a function of median
judged probabilities.

preferred to the other, and it should be substantially greater than
one-half if source A is generally preferred to source B.

The present data reveal significant source preferences that are
consistent with the competence hypothesis but not with ambi-
guity aversion. In all three studies, participants preferred to bet
on their uncertain beliefs in their area of competence rather
than on known chance events. The basketball fans in Study 1
preferred betting on basketball than on chance (median k = .76,
p < .05 by t test); the football fans in Study 2 preferred betting
on the Super Bowl than on chance (median k = .59, though this
effect is not statistically significant); and the students in Study
3 (who live near San Francisco) preferred betting on San Fran-
cisco temperature than on chance (median k = .76, p < .01).
Two other comparisons consistent with the competence hypoth-
esis are the preference for basketball over San Francisco tem-
perature in Study 1 (median k = .76, p < .05), and the prefer-
ence for San Francisco temperature over Beijing temperature in
Study 3 (median k = .86, p < .01). For further discussions of
ambiguity aversion and source preference, see Camerer and
Weber (1992), Fox and Tversky (in press), and Frisch and
Baron (1988).

Concluding Comments

Several authors (e.g., Ellsberg, 1961; Fellner, 1961; Keynes,
1921; Knight, 1921), critical of expected utility theory, distin-

guished among uncertain prospects according to the degree to
which the uncertainty can be quantified. At one extreme, un-
certainty is characterized by a known probability distribution;
this is the domain of decision under risk. At the other extreme,
decision makers are unable to quantify their uncertainty; this is
the domain of decision under ignorance. Most decisions under
uncertainty lie somewhere between these two extremes: People
typically do not know the exact probabilities associated with
the relevant outcomes, but they have some vague notion about
their likelihood. The role of vagueness or ambiguity in decision
under uncertainty has been the subject of much experimental
and theoretical research.

In the present article we have investigated this issue using the
conceptual framework of prospect theory. According to this the-
ory, uncertainty is represented by a weighting function that sat-
isfies bounded subadditivity. Thus, an event has more impact
when it turns impossibility into possibility, or possibility into
certainty, than when it merely makes a possibility more likely.
This principle explains Allais's examples (i.e., the certainty
effect) as well as the fourfold pattern of risk attitudes illustrated
in Table 1. The experiments reported in this article demonstrate
SA for both risk and uncertainty. They also show that this effect
is more pronounced for uncertainty than for risk. The latter
finding suggests the more general hypothesis that SA, and hence
the departure from expected utility theory, is amplified by
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Figure 9. Median decision weights for Dow-Jones prospects, from Study 2, plotted as a function of me-
dian judged probability.

vagueness or ambiguity. Consequently, studies of decision under
risk are likely to underestimate the degree of SA that character-
izes decisions involving real-world uncertainty.12 Subadditivity,
therefore, emerges as a unifying principle of choice that is man-
ifested to varying degrees in decisions under risk, uncertainty,
and ignorance.

The psychological basis of bounded subadditivity includes
both judgmental and preferential elements. As noted earlier, SA
holds for judgments of probability (see Table 8), but it is more
pronounced for decision weights (see Table 5). This amplifica-
tion may reflect people's affective responses to positive and neg-
ative outcomes. Imagine owning a lottery ticket that offers some
hope of winning a great fortune. Receiving a second ticket to
the same lottery, we suggest, will increase one's hope of becom-
ing rich but will not quite double it. The same pattern appears
to hold for negative outcomes. Imagine waiting for the results of
a biopsy. Receiving a preliminary indication that reduces the
probability of malignancy by one-half, we suggest, will reduce
fear by less than one-half. Thus, hope and fear seem to be
subadditive in outcome probability. To the extent that the expe-
rience of hope and fear is treated as a consequence of an action,
subadditivity may have some normative basis. If lottery tickets
are purchased primarily for entertaining a fantasy, and protec-
tive action is undertaken largely to achieve peace of mind, then
it is not unreasonable to value the first lottery ticket more than

the second, and to value the elimination of a hazard more than
a comparable reduction in its likelihood.

12 Evidence for substantial SA in the decisions of professional options
traders is reported by Fox, Rogers, and Tversky (1995).
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