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Abstract

Numerous studies have found that likelihood judgment typically exhibits subadditivity in which judged probabilities of events are less

than the sum of judged probabilities of constituent events. Whereas traditional accounts of subadditivity attribute this phenomenon to

deterministic sources, this paper demonstrates both formally and empirically that subadditivity is systematically influenced by the

stochastic variability of judged probabilities. First, making rather weak assumptions, we prove that regressive error (or variability) in

mapping covert probability judgments to overt responses is sufficient to produce subadditive judgments. Experiments follow in which

participants provided repeated probability estimates. The results support our model assumption that stochastic variability is regressive in

probability estimation tasks and show the contribution of such variability to subadditivity. The theorems and the experiments focus on

within-respondent variability, but most studies use between-respondent designs. Numerical simulations extend the work to contrast

within- and between-respondent measures of subadditivity. Methodological implications of all the results are discussed, emphasizing the

importance of taking stochastic variability into account when estimating the role of other factors (such as the availability bias) in

producing subadditive judgments.

r 2007 Published by Elsevier Inc.
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1. A stochastic model of subadditivity

People are often called on the map their subjective
degree of belief to a number on the [0,1] probability
interval. Researchers established early on that probability
judgments depart systematically from normative principles
of Bayesian updating (e.g., Phillips & Edwards, 1966).
More recently investigators have observed systematic
violations of the additivity principle, one of the most basic
axioms of probability theory (Kolmogorov, 1933). Con-
sider disjoint events A, B and their union C ¼ A[B, and let
Pr(.) be a normative probability measure. Additivity
requires that Pr(A)+Pr(B) ¼ Pr(C). For instance, if the
probability that the home team wins by at least ten points,
Pr(A), is .30 and the probability that the visiting team wins
e front matter r 2007 Published by Elsevier Inc.
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by at least ten points, Pr(B), is .10, then the probability that
the margin of victory is at least ten points, Pr(C), must be
.40 ¼ .30+.10. In contrast to this normative requirement,
numerous studies have shown that judged probability, P(.),
is usually subadditive so that P(C )oP(A)+P(B). Evidence
of this pattern is reviewed by Tversky and Koehler (1994)
and Fox and Tversky (1998). It has been observed among
avid sports fans (e.g., Fox, 1999; Koehler, 1996), profes-
sional options traders (Fox, Rogers, & Tversky, 1996),
doctors (Redelmeier, Liberman, Koehler, & Tversky,
1995), lawyers (Fox & Birke, 2002), and bookmakers
(Ayton, 1997).
Thus far, researchers typically attribute biases in judged

probability to heuristic processes based on memory
retrieval, similarity judgment, or other cognitive processes
(Bearden & Wallsten, 2004; Kahneman, Slovic, & Tversky,
1982; Gilovich, Griffin, & Kahneman, 2002). In contrast, a
growing body of research has shown that some commonly
observed patterns of bias can occur when otherwise
accurate probability judgments are perturbed by random
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error (e.g., Erev, Wallsten, & Budescu, 1994; Juslin,
Olsson, & Björkman, 1997; Soll, 1996). It is important,
therefore, to rule out, or at least account for, response
patterns due to stochastic variability before positing
complex cognitive mechanisms. The aim of this paper is
to contrast explanations of subadditive judgments based on
random error with those based on the principles of support
theory (Tversky & Koehler, 1994; Rottenstreich &
Tversky, 1997).1 We provide both a formal model and
two empirical studies that investigate the extent to which
stochastic variability contributes to this phenomenon.

It is difficult to distinguish cognitive accounts of
subadditivity from stochastic accounts of this phenomenon
because past studies have asked participants to make a
single probability judgment of each event A, B and
C ¼ A[B, in either between- or within-participant experi-
mental designs. Hence, past studies have not allowed
researchers to observe the variability of a particular
participant’s judgments of a particular event and diagnose
the extent to which such variability contributes to
subadditivity. In the present studies we aim to fill this
gap in the literature by providing opportunities for
participants to learn the relative frequencies of events in
a controlled learning environment and then eliciting
multiple judgments of each event.

The remainder of this paper is organized as follows.
First, we summarize the major cognitive explanations of
subadditivity. Next, we show how random error also might
explain subadditivity, critically discuss a published test of a
particular stochastic model, and develop a very general
one. We then present two experiments that examine the
extent to which random error can account for subadditiv-
ity, followed by a numerical simulation of our model. The
paper concludes with a general discussion relating stochas-
tic and support theory explanations of subadditivity.

Cognitive interpretations of subadditivity. Traditional
accounts of subadditivity associate this phenomenon with
the availability heuristic (Tversky & Kahneman, 1973).
For instance, Fischhoff, Slovic, and Lichtenstein (1978)
asked automobile mechanics to judge the relative frequency
of different causes for a car failing to start. Mechanics
estimated that a car would fail to start about 22 times
in 100 due to causes other than the ‘‘battery, fuel system,
or engine.’’ However, when this residual category was
broken down into distinct components consisting of
‘‘starting system,’’ ‘‘ignition system,’’ ‘‘mischief,’’ and a
new (less inclusive) residual category, a second group of
1Throughout we will use the terms random error, error, and stochastic

variability interchangeably. In statistics, one uses the term ‘‘error’’ to

denote the variability of realizations of random variables about their

expectation. Here, we use the term similarly; however, we emphasize the

variability of the realizations about the random variable’s median. The

reason for this alternative usage will be made clear, and formalized, below.

For further clarification on the use of the term ‘‘error’’ in this context, see

Brenner’s (2000) theoretical note regarding the Erev et al.(1994) model, in

which he questioned that usage; and Wallsten, Erev, and Budescu’s (2000)

response.
mechanics reported judgments that summed to 44
times in 100. These authors argued that unpacking the
catch-all category into specific instances enhanced the
accessibility of particular causes and therefore their
apparent likelihood (see also Russo & Kolzow, 1994; Ofir,
2000). Likewise, in support theory (Tversky & Koehler,
1994; Rottenstreich & Tversky, 1997) subadditivity is
attributed to availability: unpacking a description of an
event into more specific constituents may remind people of
possibilities that they would have overlooked or enhance
their salience.
Although availability could contribute to subadditivity

in situations where a category of events is partitioned into
constituents, it is unlikely to provide a satisfactory account
of all instances of subadditivity. First, a number of studies
have shown that when descriptions of events (e.g.,
‘‘precipitation next April 1’’) are unpacked into a disjunc-
tion of constituents (e.g., ‘‘rain or sleet or snow or hail’’),
judged probability sometimes increases, but not as
dramatically as the sum of the probabilities of these
constituents when they are judged separately (Rotten-
streich & Tversky, 1997; Fox & See, 2003). In fact,
unpacking descriptions into a disjunction of constituents
and a catch-all sometimes leads to a reduction in judged
probability. For instance, Sloman, Rottenstreich, Wis-
niewski, Hadjichristidis, and Fox (2004) found that the
median judged probability that a randomly selected death
is due to ‘‘disease’’ was .55, the median judged probability
that it is due to ‘‘heart disease, cancer, stroke, or any other
disease’’ rose to only .60, and the median judged
probability that it is due to ‘‘pneumonia, diabetes,
cirrhosis, or any other disease’’ actually decreased to .40.
Second, subadditivity is typically observed when a dimen-
sional space (e.g., future daytime high temperature or
closing value of a stock index) is partitioned into
constituents, and it seems implausible that the availability
mechanism contributes here. For example, Fox et al. (1996)
found that most professional options traders in their
sample judged the probability of the event ‘‘Microsoft
Stock (MSFT) will close below $94 per share two weeks
from today’’ to be lower than the sum of his or her
estimated probabilities of the events ‘‘MSFT will close
below $88 per share’’ and ‘‘MSFT will close at least $88 per
share but below $94 per share.’’
Such observations have motivated a second cognitive

interpretation of subadditivity: bias toward an ‘‘ignorance
prior’’ probability. When respondents assign probabilities
simultaneously to each of n events into which a sample
space is partitioned, their responses are typically biased
toward 1/n for each event (Fox & Clemen, 2005; cf. Van
Schie & Van der Pligt, 1994). More generally, when people
are asked to judge the probability of binary events, their
responses are biased toward 1

2
, placing equal credence on

the event and its complement, unless a partition of the
event space into n 42 interchangeable events is especially
salient (Fox & Rottenstreich, 2003; see also Fischhoff &
Bruine De Bruin, 1999). Thus, if probabilities of events A,
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B and A[B are all biased toward 1/2 then these
probabilities will be subadditive.

Stochastic interpretations of subadditivity. Despite the
appeal of availability and ignorance priors as explanations
of subadditivity, it is necessary to consider the extent to
which the phenomenon may be driven by simple random
perturbations in judgment. Tversky and Koehler (1994)
pointed out that (explicit) subadditivity can be accommo-
dated by a stochastic model such as Erev, Wallsten, and
Budescu’s (1994), which hypothesizes that subjective
probability estimates reflect an underlying covert value
disturbed by random error. The resulting overt estimate is
regressive because the probability scale is bounded at 0 and
1, thereby causing the error distribution to be skewed
inward toward 0.5. Likewise, Brenner (2003) proposed a
stochastic version of support theory that can accommodate
subadditivity without resorting to availability- or ignor-
ance prior-based explanations. In Brenner’s model, error is
attached to the process by which people recruit evidence
for the target event and its complement.

For the present treatment, we investigate a simpler
model of random error. We seek the most general form of
the assumption that an observed probability estimate in
response to an event description contains a trial-by-trial
random component. Specifically, following Erev et al.
(1994), we assume that R(X), the estimate for a described
event X, depends on a covert judgment C(X) and a random
component e. That is,

RðX Þ ¼ f ðCðX Þ; eÞ, (1)

where f is monotonically increasing in its arguments.
In Brenner’s (2003) version, the support accrued for an

event description is log-normally distributed, with a
consequent distribution over the probability estimate.
Without taking a stand on the source of the variability,
we suggest a weaker alternative to Brenner’s model based
on the assumption that the probability estimates, R(X),
have a qualitatively symmetric error distribution, by which
we mean that the observed probability estimate is just as
likely to be less than as greater than the underlying covert
value. Such a distribution will have its median at the
underlying covert value and be skewed inward, due to the
bounds at 0 and 1; but beyond the inward skewing, it is not
constrained to any particular shape or form. Given the
absence of empirical evidence to the contrary, we take this
to be a rather weak assumption. (It is also reasonable to
assume that the distribution is single peaked. Our
theorems, however, do not depend on this assumption.)
The source of the stochastic variability may be the accrual
of support (as Brenner assumes) or more generally the
memory search that precedes a probability estimate.
Alternatively, the stochastic component may be due to
criterion variability in mapping the covert judgment to an
overt response. (Budescu, Wallsten, & Au, 1997; Wallsten,
Bender, & Li, 1999; and Wallsten & González-Vallejo,
1994, all discuss the last two causes and the difficulty in
distinguishing them.) The impact of the stochastic error is
the same regardless of the source.
Unlike Brenner’s (2003) model we first assume additivity

at the covert level. We prove that this assumption along
with that of qualitatively symmetric error yields subaddi-
tivity at the overt response level when the data are
summarized in terms of means. The responses are additive,
however, when they are summarized by medians.
We then weaken our assumptions and allow for

subadditive covert judgments. Still assuming qualitatively
symmetric error, we observe a surprising result: overt
subadditivity at the level of means provided the covert
estimates of the subevents (and therefore the medians of
the observed values) are all less than .5. The same
consequence does not necessarily obtain when the covert
estimate of any subevent is greater than .5. The medians, of
course, will reflect subadditivity if the covert values do,
regardless of the locations of the covert estimates.
To state the models fully and properly, it is necessary to

introduce some notation and definitions. Consider an
event, X, composed of mutually exclusive and collectively
exhaustive subevents, X1, X2, y, Xn. Let C(Xi) be the
covert estimate and R(Xi) be the overt estimate of Xi (based
on the description) with R(Xi) and C(Xi) both bounded in
the closed [0,1] interval. Let e denote the random variable
representing trial-by-trial variability such that Eq. (1)
holds. Finally, let E(Xi) denote the mean, or the expected
value, of R(Xi).
A few words of explanation are in order: Because C(Xi)

is covert, it is not directly observable. R(Xi), on the other
hand, is. The mean of replicated observations of R(Xi) is a
sample estimate of E(Xi). Under assumption A2.1 below,
the median of these replicated observations is an estimate
of C(Xi). Finally, we explicitly do not assume additive
error, only that the observed estimate is a function of the
covert value perturbed by a stochastic component in some
fashion.
With these definitions in hand, we make the following

assumptions:
A1.
 Additivity of covert judgments. CðX Þ ¼
Pn

i¼1CðX iÞ.

A2.
 Qualitatively symmetric, skewed random error.

A2.1. R is distributed such that Pr(R(Xi)oC

(Xi)) ¼ Pr(R(Xi)4C(Xi)).
A2.2. Define S(Xi) ¼ E(Xi)�C(Xi) as the skew of the

distribution. S(Xi) monotonically decreases
with Xi such that S(Xi) ¼ 0 if C(Xi) ¼ .5.
These assumptions merit some discussion. Assumption
A1, that covert judgments are additive, implicitly brings
with it the assumption of extensionality. (A10 below relaxes
this assumption.) According to assumption A2.1, R(Xi) is
equally likely to above as below C(Xi). Thus C(Xi) is the
median of the distribution of R(Xi), and as a consequence,
A1 and A2.1 together imply that the median estimates
should satisfy additivity. A2.1, moreover, guarantees that
the (limiting) distribution of overt responses will be skewed
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inward, due to the bounds at 0 and 1. Assumption A2.2
regularizes this characteristic by assuming the skew
changes smoothly from positive to negative as the covert
estimate increases from 0 to 1 such that it equals 0 when
C(Xi) ¼ .5.

Our first model differs from Brenner’s (2003) in two
ways. First, his does not invoke A1; more accurately, the
construct of an underlying covert judgment, which is at the
heart of A1, is foreign to Brenner’s model. Second, his
model implies a distribution over R(Xi) that is inconsistent
with A2.2.2

For our model we prove:

Theorem 1. If A1 and A2 hold and C(Xi)oC(X) for all Xi,
then

Xn

i¼1

EðX iÞ=EðX Þ41:

That is, when assumptions A1 and A2 hold and in
addition the estimate of each subevent is strictly less than
that of the event, the means of replicated observations will
exhibit subadditivity. (As already noted, and by the same
assumptions, the medians are additive.) The proof of this
theorem is in Appendix A.

When A1 is relaxed to allow covert subadditivity (as in
Brenner, 2003, model), subadditivity of mean responses is
guaranteed only when the (covert) estimate of the event is
greater than 0.5 and the (covert) estimates of all subevents
are less than 0.5. Specifically, Theorem 2 follows under
these conditions when A1 is replaced by

A10: CðX Þo
Xn

i¼1

CðX iÞ:

Theorem 2. If A10 and A2 hold, C(X)X0.5 and C(Xi)o0.5
for all Xi, then,Pn

i¼1EðX iÞ

EðX Þ
4

Pn
i¼1CðX iÞ

CðX Þ
.

The proof is in Appendix A. Surprisingly, when A10 is
substituted for A1 and either C(X)o0.5 or C(Xi)X0.5 for
some i, then without stronger assumptions about the error
distribution, no prediction about the additivity of the mean
responses can be made. For example, they could be
superadditive. The reasoning behind this statement is
amplified in Appendix A.

We should note that the implications of Theorem 2 are
consistent with results from simulations of Brenner’s model
(see, Brenner, 1995). Examining some special cases (i.e.,
certain parameterizations of the log-normal support
2We make this statement on the basis of extensive numerical

calculations of the mean and skew of the R(Xi) distributions given various

mean-variance combinations for the lognormal distribution over support

of an event and its complement, s(Xi) and sðX̄ iÞ, respectively. The skew of

the R(Xi) distribution does not monotonically decrease with the mean, but

instead shows a cubic trend, with the precise shape of the function

depending on the mean and variance of the lognormal distribution.
distributions), he showed that average observed probability
judgments were subadditive, while the median ones were
additive. Theorem 2 entails that this result obtains under a
broad class of (observed) response distributions.
In the section that follows we present detailed results

of two experiments (and a summary of a third experiment)
in which we asked participants to observe the frequency
of events in a controlled learning environment and then
to make multiple probability judgments of each event.
The present analysis suggests the following testable
hypotheses:
(1)
3W

set

acce

of s
The skew of replicated judgments changes progressively
from positive to negative as the median judgment
increases from 0 to 1 and is 0 when the median
judgment is 0.5. (Assumption A2.2.)
(2)
 Interpreting response medians as sample estimates of
the underlying covert estimates (Assumption 2.1), if the
medians are additive, then the response means are
subadditive (Theorem 1).
(3)
 If the response medians are subadditive, the median
event estimate is greater than or equal to 0.5, and the
median subevent estimates all are less than 0.5; then the
means will exhibit greater subadditivity than the
medians. (Theorem 2)
(4)
 No necessary predictions follow when the medians are
subadditive and the side conditions on the median
judgments do not hold. However if response variability
is not too large, one would expect the same results as
predicted above.
2. The experiments

Most studies of subadditivity have relied on between-
respondents comparisons and even those that have used
within-respondents designs failed to include replicated
judgments. The experiments reported here use replicated
responses on a within-respondent basis. Participants in
these experiments first observed random draws from a
continuous sample space in order to form an impression of
its frequency distribution. They next estimated the
frequency per 100 trials of an event taking on values
within specified intervals. (We will refer to these judgments
as probability judgment, though, technically, the partici-
pants provided relative frequency judgments.) In the
response phase of Experiment 2, participants also judged
whether specified event probabilities were too high or
too low. We used visual stimuli distributed along a
dimensional space in a controlled learning environment
in order to minimize to the contribution of availability- and
ignorance-prior based sources of subadditivity3 and to
e expected that unpacking events depicted as visual segments into a

of sub-segments would not have a large effect on the cumulative

ssibility of instances of these events so that availability-based sources

ubadditivity would be minimized. We also expected that for many
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Table 1

Presentation Probabilities by Event and Experiment

Experiment 1 Experiment 2
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minimize the extent to which participants could recall their
previous judgments of each event Thus we hoped to bring
trial-by-trial variation of responses into shaper focus.
Event Probability Event Probability

A .05 A .12

B .13 B .19

C .18 C .37

D .37 D .23

E .21 E .09

F .06 AB .31

AB .17 BC .58

CD .54 CD .60

EF .27 DE .32

ABC .35 ABC .68

BCD .67 BCD .79

CDE .75 CDE .69

DEF .64 ABCD .88

CDEF .82 BCDE .91

Note: Elementary events are denoted with a single letter (e.g., A); events

denoted with multiple letters refer to events that are concatenations of

elementary events. For example, AB is the event that consists of the

concatenation of events A and B. From left to right, the position of the

elementary events on the computer screen was A, B, C, D, E, F for

Experiment 1 and A, B, C, D, E for Experiment 2. Indicated probabilities

of concatenated events may deviate from the sum of the probabilities of

the components events due to rounding errors.
2.1. Experiment 1

2.1.1. Method

Participants and general conditions. Participants (Ps)
were 41 members of the University of North Carolina-
Chapel Hill community recruited by means of posters on
campus bulletin boards promising payment according to
performance. The experiment was computer-controlled,
with Ps working individually in sound-attenuated cubicles.
Stimuli were shown on 15-inch color monitors and
responses were made on the keyboard.

Learning phase. A thin horizontal line spanned the
computer monitor. Ps were told that the line contained two
targets, called red and blue, invisible to them, and that balls
aimed at the targets would appear on the line one at a time
as black dots. Following each ball, they were to indicate by
typing ‘‘r’’ or ‘‘b’’ at which target they thought it was
aimed. Immediate feedback was provided by changing the
color of the ball to red or blue. For the purpose of locating
stimuli, the line was divided into 600 equal-width segments.
The red and blue targets were centered within segments 272
and 367, respectively, and stimuli aimed at each were
drawn from normal distributions centered at the target
locations and with standard deviation of 95. The targets
were thus one standard deviation apart (d0 ¼ 1). Partici-
pants were first presented with 150 training trials, half of
which were drawn from each target distribution. The
stimuli for each target were determined by dividing the line
into 75 equal-probability intervals according to the
operative distribution and taking the location at the center
of each interval. This procedure guaranteed that all Ps
would experience each target’s normal distribution of ball
landings. The 150 locations were presented in a random
order that was shown to half of the Ps; the stimuli were
presented in the opposite order to the other half of the Ps.
Ps earned $.05 for each correct response.

Estimation phase. In this phase, the Ps estimated the
probabilities that a subsequent ball would fall within
specific line segments. On each trial, a segment of the line
was highlighted and the Ps were asked how many of the
next 100 throws they expected would land within that
segment. There was no time limit on responding.

Six non-overlapping, contiguous line segments (elemen-
tary events) were constructed in such a way that additivity
of the responses could be assessed. For example, two
contiguous elementary segments, A and B, as well as their
concatenation, AB, were judged separately. The elementary
elements were combined so that in total there were 14
(footnote continued)

participants the most accessible ignorance priors would be the proportion

of the visual sample space spanned by each event so that such ignorance

priors would be additive.
target segments. These 14 segments (events) and their
corresponding true probabilities (calculated as the mean of
the relative frequencies of the segments under the red and
blue target distributions) are shown in the first two
columns of Table 1. Ps provided six probability estimates
for each segment. To mask the repetition of the target
segments, we also included 16 non-target segments, each of
which was presented only one time. Thus, Ps provided a
total of 100 estimates, but only 84 of them were used in the
data analyses.

2.1.2. Results

Accuracy of estimates. Although the Ps’ estimates were in
terms of frequencies, all results will be reported as
probabilities (estimate/100). It is useful to obtain an
overview of the data by looking at the probability estimates
as a function of the objective values before considering the
predictions. We calculated for each P the median and the
mean of his or her 6 estimates for each of the 14 events; the
open diamonds and the nearby horizontal lines, respec-
tively, of Fig. 1 show the means over participants of these
two quantities. Note first that the estimates are overall
relatively accurate; the mean absolute deviations of the
means and of the medians are .018 and .020, respectively.
Nevertheless, there is a tendency to overestimate low and
underestimate high probabilities, with the crossover at
approximately 1/3. The highly accurate estimates leave
little room for demonstrations of subadditivity, let alone
comparisons of degrees of subadditivity. Finally, the
discerning reader may notice that the medians tend to be
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Estimated versus actual probabilities
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slightly more extreme than the means, i.e., lower than the
means below .5 and greater than the means above .5,
consistent with assumption A2.2 regarding skew, defined
for our purposes as the difference between the mean and
median judgments.

Skew of response distributions. The pattern of mean–
median differences evident in the group data holds for most
individual Ps, as well, as established by regressing
separately for each P the skew of his or her six responses
for each event onto their respective true probabilities. The
solid diamonds of Fig. 2 show the mean skew over Ps for
each of the 14 events as a function of the event
probabilities. As required by assumption A2.2, that skew
decreases as the mean probability estimate increases, the
linear trend is significant (r ¼ �.73, po.001 one-tailed),
while no higher order trends are. Moreover, consistent with
A2.2, the skew predicted by the linear regression line
(ŝ ¼ �:014pþ :007) for p ¼ .50 is .00. A2.2 in fact states
that skew decreases monotonically with the estimated
probability, not with an external measure such as the
objective value. Standard regression analyses are not
appropriate when both variables contain random error.
Nevertheless and unsurprisingly given the accuracy of the
estimates, the pattern does not change when skew is plotted
against the mean estimates—no trend beyond the linear is
significant and the best fitting linear equation predicts skew
of .00 when the mean estimate is .50. Analyses of individual
participant data found that the slope of the linear
regression of skew onto event probabilities was negative
for 27 of the 41 Ps (po.05, one-tailed).

Comparison of subadditivity calculated with means and

medians. Our design allowed for 15 tests of additivity for
each P, as shown in column 1 of Table 3. For each P, we
first calculated the log unpacking ratios (Tversky &
Koehler, 1994) based on the mean and median responses
to each event, i.e.,

lnððmeanðAÞ þmeanðBÞÞ=meanðABÞÞ and

lnððmedianðAÞ þmedianðBÞÞ=medianðABÞÞ,

as well as their difference. Henceforth, we use URMN and
URMD to refer to the unpacking ratios based on means
and medians, respectively. Thus, we have log-URMN and
log-URMD. In order to obtain more reliable estimates and
to reduce the number of tests, we took the mean of the 15
log-URMN, 15 log-URMD values, and 15 differences
between the two for each P. The first row of Table 3 shows
the group means and standard deviations of these statistics.
The mean log-URMD indicates significant subadditivity
(t(40) ¼ 5.05, po.001). Because the constituent probabil-
ities (with a few exceptions) are less than 0.5, Theorem 2 is
operative for prediction purposes. Accordingly, repeated-
measures t-test reveal that the log-URMN for each event
are significantly greater than the log-URMD (t(40) ¼ 1.86,
p ¼ .035 one-tailed). Not surprisingly, the mean of the log-
URMN indicates significant subadditivity (t(40) ¼ 5.34,
po.001).
2.1.3. Discussion

Despite the overall accuracy of the mean and median
estimates, and the remarkably little skew in the distribu-
tions of repeated responses to an event (from roughly 0.01
to roughly 0.02, cf. Fig. 2), the data confirm our
predictions. Skew monotonically decreased with median
estimate and was 0 at median estimate of 0.5, consistent
with A2.2. Because medians displayed subadditivity and
side conditions were essentially met, Theorem 2 applied. As
predicted, subadditivity of means was greater than
subadditivity of medians.
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It is important to emphasize that the degree of
subadditivity overall was quite small in this instance.
Converting the mean values from logs, the mean unpacking
ratio for the mean estimates was 1.15 and that for the
medians was 1.14. We suspected that Ps exhibited a high
degree of accuracy in Experiment 1 because of the extensive
training in which they received immediate feedback and
payoffs for correct predictions. We therefore ran a follow-
up study in which 112 participants observed graphic events
in rapid succession but did not make predictions or receive
feedback during the learning phase. The 2� 2 between-
participant design manipulated number of training trials
(100 versus 300) and presence versus absence of response-
contingent (incentive-compatible) payoffs for the subse-
quent estimates. Surprisingly, there were no significant
effects of the between-respondent variables. In all respects,
the results mirrored those of the first study and therefore
we omit details of this study.

2.2. Experiment 2

Our second experiment was designed to probe the
covert-overt response distinction. Participants completed
a training phase followed by two data-collection tasks.
First, we asked Ps to provide probability estimates, as in
Experiment 1. Second, we asked Ps to indicate whether
various probabilities were greater than or less than the true
probability for the interval being displayed (unbeknownst
to Ps the probabilities presented were their own median
estimate, mean estimate, and the objective value). We
assume that such binary responses are less biased than
judged frequencies, since they do not require mapping the
covert judgment onto a verbal (or numerical) overt
response (see Erev et al., 1994, for a discussion of the
sources of response variability). Because our model
predicts that the mean of a sample of judgments should
be more regressive (i.e., closer to 0.50) than the median, we
expected that the proportion of median judgments labeled
as ‘‘too high’’ should be closer to 50% than the proportion
of mean judgments.

2.2.1. Method

Participants. We recruited 61 undergraduate students
from introductory psychology courses at UNC-CH, who
received credit toward a course requirement for their
participation.

Learning phase. Participants were provided a cover story
that described a farmer’s attempt to catch a rat that had
been a nuisance. The farmer wanted to better understand
the rat’s behavior in order to catch him. Ps were told that
the farmer had enlisted them to observe a field to learn
where and how often the rat appeared in different areas.
They were to carefully observe that rat’s behavior and to
learn where and how often it appeared. Ps learned the
stimulus distribution by observing an animated rat that
randomly popped up and down in a one-dimensional field,
alternating between 1 s appearances and disappearances.
We created the distribution of appearances by dividing the
field into five non-overlapping, contiguous segments of
equal length. Within each segment the distribution of
appearances was uniform, but over the entire field it was
roughly symmetric and single-peaked. The true probabil-
ities (i.e., relative frequencies) for each elementary event
and for the concatenations of the elementary events that
were judged are shown in the third and fourth columns of
Table 1. The order of appearance was randomized for each
P. All Ps experienced 100 learning trials, with the order of
presentation individually randomized. No payoffs were
used.

Frequency estimates. After learning the stimulus dis-
tribution, Ps read a cover story describing the farmer’s plan
for catching the rat. They were told that he wanted to build
a fence somewhere in the field to trap the rat; and that their
task was to estimate the number of times that the rat would
appear within the fence, which was to span two horizon-
tally separated fence poles, in its next 100 appearances.
We created different fence positions by sectioning the

field into regions based on the 5 non-overlapping,
contiguous equal-length (elementary) segments used to
construct the presentation distribution. Ps reported esti-
mates for both the elementary segments and for all possible
concatenations of adjacent segments.
Ps estimated the frequencies of each of the 14 events 7

times. The stimuli were presented in 7 blocks under the
constraints that each position was presented only once
within each block and no position was judged consecu-
tively. With the addition of 22 non-replicated trials, each P
provided a total of 120 estimates. No time limit was
imposed on the responses.
Choice responses. After the frequency estimation task,

Ps were asked to evaluate the responses of ‘‘another
observer.’’ They were shown each of the 14 fence positions
that they had repeatedly judged in the frequency estimation
task along with an estimate of the number of times that the
rat would appear within the fence in its next 100
appearances. Their task was to respond whether the
estimate was too high or too low. In actuality, the
responses shown to each P were his/her own mean or
median responses to each event, or the actual probabilities
of each event. Thus Ps were presented each position 3
times, for a total of 42 choices. The presentation order was
randomized for each P.

2.2.2. Results

Accuracy of estimates. As before, we present all
frequency/100 estimates as probabilities. For each P, we
calculated median and the mean estimate for each of the 14
events. The open squares and the nearby horizontal lines,
respectively, of Fig. 1 show the means over Ps of the mean
and median estimates. The results mirror those of
Experiment 1 almost perfectly: Estimates are very accurate,
slightly overestimate the low probabilities, cross the
diagonal at around 1/3, and demonstrate a slight inward
skew (means slightly more regressive than the medians).
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Skew of response distributions. The open squares of Fig. 2
show the mean skew (mean-median) over Ps as a function
of the objective probabilities for Experiment 2. The linear
correlation is .74 (po.001) and is negative for 48 of the 61
Ps (po.0001, one-tail). The quadratic component is
significant (po.03), decreasing the multiple correlation to
�.90, but the cubic trend is not. The patterns are
unchanged when mean skew is plotted as a function of
the mean probability estimates instead of the objective
values.

Comparison of subadditivity calculated with means and

medians. The current design allowed 27 tests of additivity
for each P, as summarized in columns 2 and 3 of Table 2.
For each P, we calculated the 27 values of log-URMN, log-
URMD, and of their differences. We then took the within-
P means of these three statistics. Row 2 of Table 3 shows
the group means and standard deviations of these within-P
means. The mean of the log-URMD is not significantly
different from 0 (t(60) ¼ �0.57, ns), suggesting additivity
and bringing Theorem 1 into play. On that basis, we expect
mean estimates to be subadditive. In fact, repeated-
Table 2

Additivity checks by experiment

Experiment 1 Experiment 2

(A+B)/AB (A+B)/AB (A+B+C+D)/ABCD

(C+D)/CD (B+C)/BC (AB+C+D)/ABCD

(E+F)/EF (C+D)/CD (ABC+D)/ABCD

(A+B+C)/ABC (D+E)/DE (AB+CD)/ABCD

(AB+C)/ABC (A+B+C)/ABC (A+BC+D)/ABCD

(B+C+D)/BCD (AB+C)/ABC (A+BCD)/ABCD

(B+CD)/BCE (A+BC)/ABC (A+B+CD)/ABCD

(C+D+E)/CDE (B+C+D)/BCD (B+C+D+E)/BCDE

(CD+E)/CDE (BC+D)/BCD (BC+D+E)/BCDE

(D+E+F)/DEF (B+CD)/BCD (BCD+E)/BCDE

(D+EF)/DEF (C+D+E)/CDE (BC+DE)/BCDE

(C+D+E+F)/CDEF (CD+E)/CDE (B+CD+E)/BCDE

(C+DEF)/CDEF (C+DE)/CDE (B+CDE)/BCDE

(CDE+F)/CDEF (B+C+DE)/BCDE

(CD+EF)/CDEF

Table 3

Group means (and standard deviations) of individual mean and median

log unpacking ratios and of their difference

Experiment Number

of Ps

Number

of tests/P

Log unpacking

ratio based on

Difference

Means Medians

1 41 15 .140** .129** .011*

(.192) (.192) (.038)

2 61 25 .020 �.013 .033**

(.172) (.169) (.052)

Note: Each P contributed one observation to each mean and standard

deviation. This observation was the mean of the corresponding statistic

over the number of tests per P.

*po.05, one-tailed.

**po.001, one-tailed.
measures t-tests revealed that the mean log-URMN is
significantly greater than mean log-URMD (t(60) ¼ 4.99,
po.001).

Choice responses. Assuming that Ps overestimate low
and underestimate high probabilities but make relatively
unbiased choices comparing estimates to true probabilities,
we predicted that the proportion of times mean and median
judged probabilities are judged to be ‘‘too high’’ will be
above 50% for low probabilities and below 50% for high
probabilities (see Fig. 1). This was indeed confirmed in the
data as seen in Fig. 3. Moreover, if means are more
regressive than medians, as assumed, then the proportions
of ‘‘too high’’ choices should be closer to 50% for medians
than for the means. Again, Fig. 3 shows this pattern. The
negative slope for the choices regarding means (b ¼ �0.32,
r ¼ �0.80; po0.001) is consistent with the assumed
regressive nature of the mean estimates. However, we did
not expect the same slope for choices regarding medians
(b ¼ �0.31, r ¼ �0.70, po0.01). Finally, turning to
choices concerning objective probabilities, we find that Ps
generally judged low probability events to be ‘‘too low’’
and high probability events to be ‘‘too high’’ (b ¼ 0.39,
r ¼ 0.70, po0.01). Thus there seems to be evidence of
regressive bias in judged probabilities even when a
judgment on the [0,1] interval is not explicitly called for.
Interestingly, the crossover from below to above 50% is
roughly at 0.3 rather than at 0.5.

2.2.3. Discussion

Unlike Study 1 in which median estimates were signifi-
cantly subadditive, median estimates in Study 2 did not
significantly differ from additivity. However, like Study 1,
mean estimates in Study 2 were significantly more sub-
additive than median estimates. Thus, despite the relative
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Fig. 4. Expected overt probability judgment as a function of covert

judgment for various degrees of random error.
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coherence of estimates in Study 2, the data again support the
role of regressive error in the estimation process.

The choice results are particularly interesting. They
demonstrate in a manner uncontaminated by any mapping
to an explicit [0,1] response interval an overestimation of low
and an underestimation of high probability events. The
crossover in the neighborhood of .3 is surprising.4 More-
over, choice results show that mean estimates are on average
regressive relative to medians, which under our model are
estimates of corresponding covert judgments. Surprisingly,
median judged probabilities are also regressive. One possible
explanation is that assumption A2.1, qualitatively sym-
metric random error, fails in favor of an error model that
provides greater than 50% of the error in the regressive
direction. Alternatively, it may be that covert judgments
differ as a function of the response mode (i.e., probability
assessment versus choice). Either way, the data seem to
support the notion that some instances of subadditivity can
be partly attributed to stochastic variability.
2.3. Numerical extensions of theoretical results

Our theoretical and empirical results regarding additivity
are based on intra-individual (i.e., within-respondent)
subadditivity. Most previous research, however, has tested
additivity using between-respondents methods. In this
section, we report results from numerical simulations that
allow us to compare within- and between-respondent
measures of additivity based on mean and median
judgments.

Recall that under our second assumption (A2), response
error is qualitatively symmetric: overt judgments are as
likely to be greater than as less than their respective covert
judgments. In order to derive numerical predictions
regarding within- and between-respondents effects of error,
however, we must further specify the nature of the random
error. Following, Erev et al. (1994) as well as Brenner
(2003), let us suppose that the random error is normally
distributed with mean 0 and standard deviation s in log-
odds space. Specifically, let

R0ðX Þ ¼ ln
C Xð Þ

1� C Xð Þ

� �
þ e, (2)

where e is i.i.d. with E(e) ¼ 0 and Var(e) ¼ s2. Then,
returning to probability space, we get

RðX Þ ¼
expðR0ðX ÞÞ

1þ expðR0ðX ÞÞ
. (3)

When s40, E(R(X))4C(X) if C(X)o.5; E(R(X)) ¼ C(X) if
C(X) ¼ .5; and E(R(X))oC(X) if C(X)4.5. However,
because the error is symmetric (with mean 0), the median
R(X) ¼ C(X) for all C(X). E(R(X)) as a function of C(X) is
4It is possible that the crossover point near .3 in Study 2 could reflect a

bias toward an ignorance prior probability of 1/3 when the field is

partitioned into three segments by the placement of two fence posts (cf.

Fox & Rottenstreich, 2003; Fox & Clemen, 2005; See et al., 2006).
shown in Fig. 4 for several values of s. Note that the curves
become more regressive as s increases. We invoked Eqs. (2)
and (3) to compare within- and between-respondent effects
of error using the procedures described next.

Generating simulated judgments. For each simulated
decision maker (DM), we randomly and independently
sampled k values from a uniform distribution on the
interval (0, C(X)). These values, multiplied by a constant a,
correspond to the covert judgments, C(Xi), for k subevents
that together form the event X, subject to the constraint
that

Xk

i¼1

CðX iÞ ¼ bCðX Þ.

Varying b allows us to make the covert judgments additive
(b ¼ 1), subadditive (1ob), or superadditive (0obo1),
since

Pk
i¼1CðX iÞ

CðX Þ
¼ b.

The constant a provides the means to achieve the desired
value of b. Specifically, let yi denote the values sampled on
(0, C(X)). Then a ¼ bCðX Þ=

Pk
i¼1yi and C(Xi) ¼ ayi.

Under this scheme, we can manipulate the value of the
covert judgment for the global event, X, by tuning C(X);
and all sets of feasible C(Xi) are sampled with equal
probability. Then, to obtain the simulated overt judgments
we transform the C(Xi) and C(X) according to Eqs. (2) and
(3), using a common s, to get the simulated overt
judgments R(X) and R(Xi) (i ¼ 1, y, k). Finally, the
additivity of the simulated judgments is assessed with the
unpacking ratio

URðCðX Þ;b; sÞ ¼
Pk

i¼1f mðfRðX iÞgÞ

f mðfRðX ÞgÞ
,
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Fig. 5. Expected unpacking ratio as a function of underlying probability

judgment of event X and additivity of underlying judgments (b) computed

using mean (URMN—left panel) and median (URMD—right panel)

within-respondent judgments for k ¼ 4 and s ¼ 2.

Fig. 6. Expected unpacking ratio as a function of underlying probability

judgment of event X and additivity of underlying judgments (b) computed

using mean (URMN—left panel) and median (URMD—right panel)

between-respondent judgments for k ¼ 4 and s ¼ 2.
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where fm(.) returns the mean of its argument if m ¼ 0 and
returns the median if m ¼ 1. Within-respondent additivity
can be measured by sampling multiple overt judgments, the
R(X) and R(Xi), for each simulated DM and then taking
means and medians of these judgments to compute the UR.
Sampling the overt judgments from multiple (simulated)
DMs whose C(Xi) may vary but who share a common C(X)
allows us to examine the between-respondents case.5

Simulation design. For both the within- and between-
respondents tests we factorially combined the number of
evaluated subevents k ¼ {2,4,8}, the value of the covert
judgment C(X)A{.10, .20,y, .90}, the additivity of the
covert judgments bA{.75, .95, 1.00, 1.05, 1.25}, and the
degree of random response error sA{.50, 1.00, 1.50}. For
the between-respondent tests, we independently generated
one set of covert judgments for the sub-events C(Xi) and
their corresponding overt judgments R(Xi) for each
simulated DM in each cell. That procedure yielded a
distribution of R(Xi) for each i in which each DM
contributed one observation. Taking means and medians
of the resulting distributions, we calculated the URs. This
procedure captured the pooling method used in most
published work in which subadditivity has been assessed.
For the within-respondent tests, we generated one set of
C(Xi) for each simulated DM. Then, holding the C(Xi)
fixed for the DM, we generated a distribution of R(Xi) and
computed the resulting log-URMN and log-URMD
values. We repeated this process in each cell for a large
number of DMs and averaged the results.

2.4. Results

Within-respondents. The within-respondent results show
that subadditivity on URMN values increases as the
number of evaluated sub-events k increases, and as the
UR of the underlying covert judgments increases (as
governed by b). Most important, we observe that the
degree of random response error s strongly affects the
subadditivity of responses. Specifically, as the error in
responses increases and individual responses become more
regressive, subadditivity increases. Interestingly, as shown
in Fig. 5 for s ¼ 2, we also observe that URMN is not
monotonic in the covert judgment, C(X), of the event X.
Recall that the assumptions upon which our theorems are
based did not allow us to derive predictions for cases in
which not all C(Xi)o0.5. In the numerical simulations, we
did not constrain the C(Xi) to be below 0.5, and, in fact, for
the cases in which C(X)40.5 some of the simulated C(Xi)
met or exceeded 0.5. When this occurred, the effects of
error on the R(Xi) corresponding to C(Xi)o0.5 was
counteracted in the UR: The regressive property of the
5More complicated procedures can be used to examine the more general

case where both the C(X) and C(Xi) are free to vary across DMs by, for

example, specifying a distribution from which the C(X) are sampled;

however, the number of additional assumptions required to do so (e.g., the

nature of the C(X) distribution), we believe, makes the results of such an

exercise perhaps less general.
error in part ‘‘cancelled out,’’ which accounts for decrease
in the UR around C(X) ¼ 0.5 in URMN seen in Fig. 5.
The between-respondent results based on medians are

affected only by the additivity of the covert judgments b.
This result obtains because the error is qualitatively
symmetric and therefore the median R(Xi) equals C(Xi)
and thus UR ¼ b.

Between-respondents. The patterns of between-respon-
dent results on mean-based URs, shown in Fig. 6, are
identical to those for the within-respondent case, though
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the URs are slightly smaller in the former case. The results
from median-based URs are very different from those
shown in Fig. 5, however. In all cases, the median-based
URs are smaller than the mean-based URs. Most interest-
ingly, the median-based URs for the between-respondent
case are smaller than b, the UR of the underlying covert
judgments. It is also noteworthy that the observed UR
demonstrates superadditivity for most values of b and is
subadditive only when b ¼ 1.25 (for the parameters studied
here). Unlike the mean-based URs, which are strongly
affected by random error, the median-based URs do not
shift with random error and increase at a rather slow rate
as the number of evaluated subevents increases. Overall,
medians seem to provide a more robust measure of the
additivity of the underlying judgments.

2.5. Discussion

The results of our simulation suggest that the summary
statistics used to report judgment results can systematically
affect conclusions about the degree to which the judgments
show subadditivity: When means are used subadditivity is
likely to appear more pronounced than when medians are
used. This conclusion holds for statistics based on both
within- and between-participant responses. In the original
support theory article, Tversky and Koehler (1994)
primarily based their conclusions regarding the subaddi-
tivity of probability judgments on mean between-respon-
dent responses (see, for example, their Tables 1, 3–7).
Rottenstreich and Tversky (1997), in their extension of the
original support theory, exclusively reported median
between-respondent results (see their Tables 1 and 2, and
4 and 5). Both the original paper and the extension report
consistent findings of subadditivity. A survey of subsequent
research on support theory finds that (between-respondent)
means are reported by a number of researchers (e.g.,
Brenner & Rottenstreich, 1999; Koehler, Brenner, &
Tversky, 1997; Koehler, White, & Grondin, 2003), though
several report medians between-respondent (e.g., Fox &
Birke, 2002) or compute median subadditivity within-
respondent (e.g., Fox, 1999; Tversky & Fox, 1995).
Because several of these studies relied on between-
participant comparisons, their estimates of additivity may
be biased. In particular, using means may have over-
estimated subadditivity (when it was found), while those
reporting medians may have underestimated subadditivity.

3. General discussion

It is necessary to emphasize that in the present studies we
relied on well-learned probability distributions for which
we elicited multiple judgments of each event on a within-
participant basis. Such a design was mandated by the
questions we were investigating, because (1) it allowed us to
obtain replicated observations from each individual, (2) the
visual depiction of target events made it unlikely that
participants would recall their prior responses and there-
fore be consistent for uninteresting reasons, and (3) there
was a ‘‘true’’ probability for every event. However, such a
design probably weakened our results because (1) the
repeatable events used in these experiments may have given
rise to less trial-by-trial variability than is commonly
obtained with paradigms that use more naturalistic events
(for which the construction of beliefs is a more error prone
process) or elicit a single judgment for each event (for
which the memory of previous responses to the same
question are not available), and (2) participants may have
learned the true distributions so well that they were less
susceptible to response variability than is typically present
in studies of subadditivity. Thus, the very design that
allows us to investigate our hypotheses about the effects of
random noise on additivity may also serve to reduce its
magnitude. Nevertheless, the pattern of results that we
obtained conforms closely with the predictions that follow
from our model, supporting the notion that stochastic
variability contributes significantly to observed subaddi-
tivity. The numerical simulation amplifies this result using
error variances that we suspect will be more typical of
judgment in general knowledge or memory retrieval
contexts.

Summary of results. Although participants were rela-
tively accurate in assessing probabilities in both experi-
ments, they did consistently overestimate low and
underestimate high probabilities, as would be expected
given an inwardly-skewed error distribution. Surprisingly,
the function crossed the diagonal at about 0.3 rather than
at 0.5 in both cases. Also, as predicted from the assumption
of an inwardly-skewed error distribution, skew defined
within assumption A2.2 was positive for low probabilities,
decreased monotonically to 0 at probability 0.5, and
continued monotonically decreasing to negative values
for high probabilities.
The probability-estimate data supported our predictions

with regard to the relationship between means and
medians. Specifically, mean estimates were consistently
more regressive, and they also displayed more subadditivity
than the median estimates. The within-respondent simula-
tions yielded precisely the same pattern of results and also
illustrated the consequences predicted under Theorem 2.
When applied to between-respondent designs, and main-
taining our model assumptions, the simulations demon-
strate that summaries based on means are likely to
overestimate subadditivity and those based on medians
are likely to underestimate subadditivity, though the bias in
the latter case is of a smaller magnitude.
The choice data in Experiment 2 turned out largely as

predicted, with the interesting anomaly that the choice
functions all crossed the 50% point, i.e., changed from a
majority to a minority of ‘‘too high’’ choices, at a
probability of about 0.3 rather than 0.5. Specifically, when
shown the true probabilities, participants judged low values
as too low up to a probability of about 0.3 and then judged
them as too high. Conversely, when shown their mean or
median estimates, they judged low values as too high up to
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a probability of about 0.3 and then judged them as too low.
The proportion of ‘‘too high’’ choices is closer to 50% for
the medians than for the means, as we had expected, but
the function is not flat at 50%, as predicted by the
assumption of qualitative symmetric error. The pattern is
consistent, however, with our overall stochastic frame-
work, replacing the assumption of qualitative symmetric
error with one that assumes heavier inward tails.

Stochastic and cognitive causes of subadditivity: Comple-

mentary mechanisms. The simple conclusion from our
results is that overt probability estimates show trial-by-trial
variability such that the distribution of estimates is skewed
inward. We have shown that, in many cases, this is
sufficient to produce observable probability estimates that
are subadditive, even when the underlying judgments are
additive. To be clear: We are not claiming that underlying
judgments are in fact additive; rather, we simply wish to
point out that response variability can contribute to
observed subadditivity. It is possible to have subadditive
judgments that are driven by availability—i.e., by prob-
ability judgments assigned to explicitly described events
exceeding those assigned to less explicit, more difficult to
think about events—and also by stochastic response
variability. The same is true for subadditive judgments
driven by a bias toward an ‘‘ignorance prior’’ probability
(Fox & Rottenstreich, 2003; Fox & Clemen, 2005; See et
al., 2006); these may also be made more subadditive by
random response variability.

Our results show clearly that probability judgments tend
to be regressive. However, our model is agnostic on the
source of the variability and the reason for the regressive
skew. Perhaps this variability and its characteristics can be
captured by a computational (process) model of judgment
such as MINERVA-DM (Dougherty, Gettys, & Ogden,
1999). Bearden and Wallsten (2004) showed that MINER-
VA-DM can provide a good model of the support accrual
process in probability judgment, but they did not explore
the issue of response variability. We hope that the
theoretical and empirical results reported in the current
paper will encourage additional work on process accounts
of probability judgment.

Methodological considerations. The numerical results
show that the unpacking ratio (UR)—the index of
subadditivity we have used throughout is less biased in
both within- and between-respondents tests when it is
computed based on median judgments. We found that the
expected value of URMD equals the true UR in within-
respondents tests (assuming qualitatively symmetric ran-
dom response error). Moreover, in the between-respon-
dents tests, the URMD was, on average, closer to the true
UR than was URMN. Further, the URMD was sub-
additive when and only when the true underlying
judgments were subadditive in within-respondents tests,
and only when the judgments were strongly subadditive in
the between-respondents tests. Interestingly, the between-
respondent URMD was biased downward: It tended to
underestimate subadditivity, whereas the URMN tends to
overestimate subadditivity. Researchers who wish to draw
conclusions about the actual degree of subadditivity in the
judgment processes of their participants should consider
these properties of the unpacking ratio.
In sum, we argue that the way in which judgment data

are analyzed affects the conclusions that are reached and
have presented results showing that the conclusions are
likely to differ depending on the summary statistic (mean
or median) used to assess subadditivity. Our results show
that the median, though still biased in between-respondents
comparisons, is more robust to random response error. Of
course, the statistic one uses to assess subadditivity should
depend on one’s research question.
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Appendix A
Proof of Theorem 1. CðX Þ ¼
Pn

i¼1CðX iÞ from A1. Sub-
stituting terms from the definition of skew leads to
EðX Þ � SðX Þ ¼

Pn
i¼1EðX iÞ �

Pn
i¼1SðX iÞ, which is rear-

ranged to
Pn

i¼1EðX iÞ ¼ EðX Þ þ
Pn

i¼1SðX iÞ � SðX Þ.

Note from A2.2 that S(Xi)oS(X), because C(Xi)oC(X).
Therefore,

Pn
i¼1SðX iÞ � SðX Þ40.

Thus
Pn

i¼1EðX iÞ4EðX Þ and therefore
Pn

i¼1EðX iÞ=
EðX Þ41.

Proof of Theorem 2. From the definition of skew,

Xn

i¼1

EðX iÞ

EðX Þ
¼
Xn

i¼1
CðX iÞ þ

Xn

i¼1

SðX iÞ

CðX Þ þ SðX Þ
:

To prove that

Xn

i¼1

CðX iÞ þ
Xn

i¼1

SðX iÞ

CðX Þ þ SðX Þ
4
Xn

i¼1

CðX iÞ

CðX Þ

as required, multiply the denominators out, subtract the
common term from both sides of the inequality. The result
is

C Xð Þ
Xn

i¼1

SðX iÞ4S Xð Þ
Xn

i¼1

CðX iÞ. (A1)

Because C(X)X.5, A2 guarantees that S(X)p0 Similarly,
because C(Xi)o.5 for all Xi, all S(Xi)o0 Thus, expression
(A1) is always satisfied.

Predictions when covert judgment is non-additive, but do

not conform to the restrictions of Theorem 2. Here we show
that additivity predictions are not possible unless C(X)X.5
and C(Xi)o.5 for all Xi. Consider first the case where
C(X)X.5 and C(Xi)X.5 for a single Xi. Now, becausePn

i¼1CðX iÞ4CðX Þ by A10, the
Pn

i¼1SðX iÞ must be
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sufficiently large to counter-balance the negative S(X). But
a single S(Xi) is itself negative and there is no guarantee the
sum of the remaining S(Xi) will be capable of making up
the difference.6

Similarly, when C(X)o.5, its skew is positive, but it
cannot be guaranteed that the sum of the skews of the
subevents will be sufficiently greater than S(X) that
expression (A1) holds.
References

Ayton, P. (1997). How to be incoherent and seductive: Bookmakers’ odds

and support theory. Organization Behavior and Human Decision

Processes, 72, 99–115.

Bearden, J. N., & Wallsten, T. S. (2004). MINERVA-DM and subadditive

frequency judgments. Journal of Behavioral Decision Making, 17,

349–363.

Brenner, L. A. (1995). A stochastic model of the calibration of subjective

probabilities. Unpublished doctoral dissertation. Stanford University.

Brenner, L. A. (2000). Should observed overconfidence be dismissed as a

statistical artifact? Critique of Erev, Wallsten, and Budescu (1994).

Psychological Review, 107, 943–946.

Brenner, L. A. (2003). A random support model of the calibration of

subjective probabilities. Organizational Behavior & Human Decision

Processes, 90, 87–100.

Brenner, L., & Rottenstreich, Y. (1999). Focus, repacking, and the

judgment of grouped hypotheses. Journal of Behavioral Decision

Making, 12, 141–148.

Budescu, D. V., Wallsten, T. S., & Au, W. (1997). On the importance of

random error in the study of probability judgment. Part II: Using the

stochastic judgment model to detect systematic trends. Journal of

Behavioral Decision Making, 10, 173–188.

Dougherty, M. R. P., Gettys, C. F., & Ogden, E. E. (1999). MINERVA-

DM: A memory processes model for judgments of likelihood.

Psychological Review, 106, 180–209.

Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous over- and

underconfidence: The role of error in judgment processes. Psycholo-

gical Review, 101, 519–527.

Fischhoff, B., & Bruine De Bruin, W. (1999). Fifty-fifty ¼ 50%? Journal of

Behavioral Decision Making, 12, 149–163.

Fischhoff, B., Slovic, P., & Lichtenstein, S. (1978). Fault trees: Sensitivity

of estimated failure probabilities to problem representation. Journal of

Experimental Psychology: Human Perception and Performance, 4,

330–344.

Fox, C. R. (1999). Strength of evidence, judged probability, and choice

under uncertainty. Cognitive Psychology, 38, 167–189.

Fox, C. R., & Birke, R. (2002). Forecasting trial outcomes: Lawyers assign

higher probability to possibilities that are described in greater detail.

Law and Human Behavior, 26, 159–173.

Fox, C. R., & Clemen, R. T. (2005). Subjective probability assessment in

decision analysis: Partition dependence and bias toward the ignorance

prior. Management Science, 51, 1417–1432.

Fox, C. R., Rogers, B. A., & Tversky, A. (1996). Options traders exhibit

subadditive decision weights. Journal of Risk and Uncertainty, 13,

5–17.

Fox, C. R., & Rottenstreich, Y. (2003). Partition priming in judgment

under uncertainty. Psychological Science, 14, 195–200.

Fox, C. R., & See, K. E. (2003). Belief and preference in decision under

uncertainty. In D. Hardman, & L. Macchi (Eds.), Thinking:

Psychological Perspectives on Reasoning, Judgment, and Decision

Making. Hoboken, NJ: Wiley.
6Even adding the assumption of symmetric skew around .5 is not

sufficient to prove the result, because there is no constraint on the C(Xi)

and therefore no way to assure a lower bound on the sum of the skews.
Fox, C. R., & Tversky, A. (1998). A belief-based account of decision under

uncertainty. Management Science, 44, 879–895.

Gilovich, T, Griffin, D., & Kahneman, D., (Eds.) (2002). Heuristics and

biases: The psychology of intuitive judgment. New York: Cambridge

University Press.

Juslin, P., Olsson, H., & Björkman, M. (1997). Brunswikian and

Thurstonian origins of bias in probability assessment: On the

interpretation of stochastic components of judgment. Journal of

Behavioral Decision Making, 10, 189–209.

Kahneman, D., Slovic, P., & Tversky, A. (Eds.), (1982). Judgment under

uncertainty: Heuristics and biases. New York: Cambridge University

Press.

Koehler, D. J. (1996). A strength model of probability judgments for

tournaments. Organizational Behavior & Human Decision Processes,

66, 16–21.

Koehler, D. J., Brenner, L. A., & Tversky, A. (1997). The enhancement

effect in probability judgment. Journal of Behavioral Decision Making,

10, 293–313.

Koehler, D. J., White, C. M., & Grondin, R. (2003). An evidential support

accumulation model of subjective probability. Cognitive Psychology,

46, 152–197.

Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrech-

nung. Berlin: Springer.

Ofir, C. (2000). Ease of recall vs recalled evidence in judgment: Experts vs

laymen. Organizational Behavior & Human Decision Processes, 81,

28–42.

Phillips, L. D., & Edwards, W. (1966). Conservatism in a simple

probability inference task. Journal of Experimental Psychology, 72,

346–354.

Redelmeier, D., Koehler, D. J., Liberman, V., & Tversky, A. (1995).

Probability judgment in medicine: Discounting unspecified alterna-

tives. Medical Decision Making, 15, 227–230.

Rottenstreich, Y., & Tversky, A. (1997). Unpacking, repacking, and

anchoring: Advances in support theory. Psychological Review, 104,

406–415.

Russo, J. E., & Kolzow, K. J. (1994). Where is the fault in fault trees?

Journal of Experimental Psychology: Human Perception & Perfor-

mance, 20, 17–32.

See, K. E., Fox, C. R., & Rottenstreich, Y. (2006). Between ignorance and

truth: Partition dependence and learning in judgment under un-

certainty. Journal of Experimental Psychology: Learning, Memory and

Cognition, 32, 1385–1402.

Sloman, S., Rottenstreich, Y., Wisniewski, E., Hadjichristidis, C., & Fox,

C. R. (2004). Typical versus atypical unpacking and superadditive

probability judgment. Journal of Experimental Psychology: Learning,

Memory & Cognition, 30, 573–582.

Soll, J. B. (1996). Determinants of overconfidence and miscalibration: The

roles of random error and ecological structure. Organizational

Behavior & Human Decision Processes, 65, 117–137.

Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty.

Psychological Review, 102, 269–283.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging

frequency and probability. Cognitive Psychology, 5, 207–232.

Tversky, A., & Koehler, D. J. (1994). Support theory: A nonextensional

representation of subjective probability. Psychological Review, 101,

547–567.

Van Schie, E. C., & Van der Pligt, J. (1994). Getting an anchor on

availability in causal judgment. Organizational Behavior & Human

Decision Processes, 57, 140–154.

Wallsten, T. S., Bender, R. H., & Li, Y. (1999). Dissociating judgment

from response processes in statement verification: The effects of

experience on each component. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 25, 96–115.

Wallsten, T. S., Erev, I., & Budescu, D. V. (2000). The importance of theory:

Response to Brenner (2000). Psychological Review, 107, 947–949.
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